Skip to main content
Log in

Cost-effective SnS heterojunction solar cells synthesized by spray pyrolysis

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present study reports, synthesis and fabrication of SnS/n-Si (100) heterojunction solar cell by a cost-effective spray pyrolysis technique. XRD peaks resemble orthorhombic SnS. XRD and SEM study reveals crystal/grain size as 15 and 26.4 nm, respectively. The SnS surface is closely packed, and composition of Sn and S element weight% found to be 96.58 and 3.42, respectively, and hot probe method confirms intrinsic p-type conductivity due to excesses Tin in films. Raman spectral analysis confirms the SnS phase along with Sn2S3 and SnS2. Isochronal and isothermal studies show that film sheet resistivity attains lowest value of 1.7248 × 10−2 Ωcm when annealed at 200 °C for 15 min. From M-S contact studies, estimated reverse saturation current density, ideality factor, knee voltage, barrier potential, and disorder energy are found to be 3.0563 × 10−10 A cm−2, 1.5225, 0.158 V, 0.7669 eV, and 0.0864 eV. Solar cell exhibits a typical rectifying diode behavior and its series resistance decreases from 41.44 to 16.66 kΩ as film thickness increases from 37 to 63 nm under illumination of 206 mW cm−2.

Cross section, top view, band diagram of Ag/SnS/n-Si /Al heterojunction solar cell

Highlights

  • Fabrication of SnS/n-Si (100) heterojunction solar cell by cost-effective spray pyrolysis technique.

  • XRD, SEM, EDS studies confirm the formation of orthorhombic, closely packed, stoichiometric films.

  • Hot probe and Raman spectral analysis confirm the p-type and SnS phase along with Sn2S3 and SnS2.

  • Isochronal and isothermal treatment further reduces film sheet resistivity.

  • Cell exhibits a typical rectifying diode behavior, variable series resistance as a function of thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramakrishna Reddy KT, Koteswara Reddy N, Miles RW (2006) Photovoltaic properties of SnS based solar cells. Sol Energy Mater Sol Cells 90:3041–3046

    Article  CAS  Google Scholar 

  2. Guneri E, Ulutas C, Kirmizigul F, Altindemir G, Gode F, Gumus C (2010) Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition. Appl Surf Sci 257:1189–1195

    Article  CAS  Google Scholar 

  3. Zainal Z, Hussein MZ, Ghazali A (1996) Cathodic electro deposition of SnS thin films from aqueous solution. Sol Energy Mater Sol Cells 40:347–357

    Article  CAS  Google Scholar 

  4. Sahin M, Afak HS, Tug luog lu N, Karadeniz S (2005) Temperature dependence of current-voltage characteristics of Ag/-p-SnS Schottky barrier diodes. Appl Surf Sci 242:412–418

    Article  CAS  Google Scholar 

  5. Ghosh B, Das M, Banerjee P, Das S (2008) Fabrication and optical properties of SnS thin films by SILAR method. Appl Surf Sci 254:6436–6440

    Article  CAS  Google Scholar 

  6. Reddy NK, Ramesh K, Ganesan R, Reddy KTR, Gunasekhar KR, Gopal ESR (2006) Synthesis and characterization of co-evaporated tin sulphide thin films. Appl Phys A 83:133–138

    Article  Google Scholar 

  7. Vidal J, Lany S, Avezac Md’, Zunger A, Zakutayev A, Francis J, Tate J (2012) Band structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett 100:032104–4

    Article  Google Scholar 

  8. Shama AA, Zeyada HM (2003) Electronic dielectric constants of thermally evaporated SnS thin films. Opt Mater 24:555–561

    Article  Google Scholar 

  9. Johnson JB, Jones H, Latham BS, Parker JD, Engelken R, Barber C (1999) Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semicond Sci Technol 14:501–507

    Article  CAS  Google Scholar 

  10. Tanušsevski A, Poelman D (2003) Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation. Sol Energy Mater Sol Cells 80:297–303

    Article  Google Scholar 

  11. Huang CC, Lin YJ, Chuang CY, Liu CJ, Yang YW (2013) Conduction-type control of SnSx films prepared by the sol–gel method for different sulfur contents. J Alloy Compd 553:208–211

    Article  CAS  Google Scholar 

  12. Min HS, Satan AK, Nagalingam S (2011) Chemical bath deposition of SnS thin films: AFM, EDAX and UV-Visible characterization. Orient J Chem 27:1375–1381

    Google Scholar 

  13. Messaoudi M, Aida MS, Attaf N, Satta S (2019) SnS thin films deposition by spray pyrolysis: solvent influence. Chalcogenide Lett 16:157–162

    CAS  Google Scholar 

  14. Jacob A, Andrade-Arvizu MC-P, Osvaldo V-G (2015) SnS-based thin film solar cells: perspectives over the last 25 years. J Mater Sci Mater Electron 26:4541–4556

    Article  Google Scholar 

  15. Asada E, Akimoto Y, Nagashima K, Yashida H, Ma Y (1999) Nickel powder and process for preparing the same. US Patent no. 6,007,743

  16. Perednis D, Gauckler LJ (2004) Thin film deposition using spray pyrolysis. J Electroceram 14:103–111

    Article  Google Scholar 

  17. Ghosh B, Bhattacharjee R, Banerjee P, Das S (2011) Structural and optoelectronic properties of vacuum evaporated SnS thin films annealed in argon ambient. Appl Surf Sci 257:3670–3676

    Article  CAS  Google Scholar 

  18. Gordillo G, Botero M, Oyola JS (2008) Synthesis and study of optical and structural properties of thin films based on new photovoltaic materials. Microelectron J 39:1351–1353

    Article  CAS  Google Scholar 

  19. Ristov M, Sinadinovski G, Grozdanov I, Mitreski N (1989) Chemical deposition of tin (II) sulphide thin Films. Thin Solid Films 173:53–58

    Article  CAS  Google Scholar 

  20. Price LS, Parkin IP, Hardy AME, Clark RJH (1999) Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3 and SnS2) on glass. Chem Mater 11:1792–1799

    Article  CAS  Google Scholar 

  21. Shibata T, Mironushi Y, Miura T, Kishi T (1991) Chemical and structural characterization of SnS2 single crystals grown by low-temperature chemical vapour transport. J Mater Sci 26:5107–5112

    Article  CAS  Google Scholar 

  22. Formstone CA, Fitzgerald ET, Cox PA, O’Hare D (1990) Photoelectron spectroscopy of the tin dichalcogenides SnS2-xSex intercalated with cobalt ocene. Inorg Chem 29:3860–3866

    Article  CAS  Google Scholar 

  23. Ibrahim AA, Ashour A (2006) ZnO/Si solar cell fabricated by spray pyrolysis technique. J Mater Sci Mater Electron 17:835–839

    Article  CAS  Google Scholar 

  24. Li H, Cheng S, Zhang J, Huang W, Zhou H, Jia H (2015) Fabrication of CdS/SnS heterojunction for photovoltaic application. World J Condens Matter Phys 5:10–17

    Article  CAS  Google Scholar 

  25. Jiang F, Shen H, Wei Wang Z, Zhang L (2012) Preparation of SnS film by sulfurization and SnS/a-Si heterojunction solar cells. J Electrochem Soc 159(3):H235–H238

    Article  CAS  Google Scholar 

  26. Yun H-S, Park B-w, Choi YC, Im J, Shin TJ, Seok II S (2019) Efficient nanostructured TiO2/ SnS heterojunction solar cells. Adv Energy Mater 9:1901343

    Article  Google Scholar 

  27. Takano Y, Oyaizu K (2018) Fabrication of SnS–MgSnO heterojunction solar cells using vacuum thermal evaporation and sol-gel method. Mater Lett 228:414–417

    Article  CAS  Google Scholar 

  28. Mishra A (2014) Photovoltaic properties of SnS based solar cells. IJMPE 2:45–46

    Google Scholar 

  29. Lopez S, Ortiz A (1994) Spray pyrolysis deposition of SnxSy thin films. Semicond Sci Technol 9:2130–2133

    Article  CAS  Google Scholar 

  30. Murthy LCS, Rao KSRK (1999) Thickness dependent electrical properties of CdO thin films prepared by spray pyrolysis method. Bull Mater Sci 22:953–957

    Article  CAS  Google Scholar 

  31. Jeyaprakash BG, Ashok kumar R, Kesavan K, Amalarani A (2010) Analysis of precursor decomposition temperature in the formation of CdO thin films prepared by spray pyrolysis method. J Am Sci 6:75–79

    Google Scholar 

  32. Lalitha S, Sathyamoorthy R, Senthilarasu S, Subbarayan A (2006) Influence of CdCl2 treatment on structural and optical properties of vacuum evaporated CdTe thin films. Sol Energy Mater Sol Cells 90:694–703

    Article  CAS  Google Scholar 

  33. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, USA

    Google Scholar 

  34. Korotcenkov G, Cornet A, Rossinyol E, Arbiol J, Brinzari V, Blinov Y (2005) Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution. Thin Solid Films 471:310–319

    Article  CAS  Google Scholar 

  35. Garnier J, Bouteville A, Hamilton J, Pemble M, Povey I (2009) A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films. Thin Solid Films 518:1129–1135

    Article  CAS  Google Scholar 

  36. Sinsermsuksakul P, Heo J, Noh W, Hock AS, Gordon RG (2011) Atomic layer deposition of tin mono sulfide thin films. Adv Energy Mater 1:1116–1125

    Article  CAS  Google Scholar 

  37. Anitha N, Anitha M, Raj Mohamed J, Valanarasu S, Amalraj L (2018) Influence of tin precursor concentration on physical properties of nebulized spray deposited tin disulfide thin films. J Asian Ceram Soc 6:121–131

    Article  Google Scholar 

  38. Shashidhar R, Angadi B, Chandra Shekar HD, Murthy LCS (2014) Preparation and characterization of spray deposited CuO thin films towards fabrication of low cost hetero-junction solar cells. In: Advances in applied physical and chemical sciences—a sustainable approach & first impression, Excellent publishing house, India, pp 21–32

  39. Shashidhar R, Angadi B, Chandra Shekar HD, Murthy LCS (2015) Influence of spray deposited TiO2 film thickness on the performance of n-TiO2/p-Si low cost hetero-junction solar cell and its utility as a carrier blocking layer. Solid State Physics AIP Conf Proc & AIP, 1665:120012

  40. Bhuvaneswari HB, Rajagopal Reddy V, Mohan Rao G (2005) Refractory metal nitride rectifying contact of ZrNon silicon. J Instrum Soc India 35:149–156

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of JSSMVP, Mysuru and are thankful to INUP, CEN, IISc., Bangalore, India for extending central facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shashidhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashidhar, R., Choudhary, N. Cost-effective SnS heterojunction solar cells synthesized by spray pyrolysis. J Sol-Gel Sci Technol 96, 188–196 (2020). https://doi.org/10.1007/s10971-020-05397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05397-7

Keywords

Navigation