Skip to main content
Log in

Combined Effect of Ag and Mg Additions on Localized Corrosion Behavior of Al-Cu Alloys with High Cu Content

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The localized corrosion behavior of Al-Cu and Al-Cu-Mg-Ag alloys was investigated in a naturally aerated 0.6 M NaCl solution by in situ observations and electrochemical techniques. The combined roles of Ag and Mg in affecting the corrosion resistance of Al-Cu alloys were observed using electron probe microanalysis and scanning Kelvin probe force microscopy. Results prove that Al-Cu-Mg-Ag alloy exhibits a weaker susceptibility to pitting attack than Al-Cu alloy. Such difference is ascribed to Ag and Mg atoms dissolved in Al matrix that increase the potential of the Al matrix, resulting in a smaller potential difference between the Al2Cu particles and Al matrix, that is, a weaker galvanic corrosion couple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Xu, J. Liu, G. Luan, and C. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219-T6 Aluminum Alloy, Mater. Des., 2009, 30, p 3460–3467

    CAS  Google Scholar 

  2. W. Xu and J. Liu, Microstructure and Pitting CORROSION of Friction Stir Welded Joints in 2219-O Aluminum Alloy Thick Plate, Corros. Sci., 2009, 51, p 2743–2751

    CAS  Google Scholar 

  3. J. Kang, Z. Feng, G.S. Frankel, J. Li, G. Zou, and A. Wu, Effect of Precipitate Evolution on the Pitting Corrosion of Friction Stir Welded Joints of an Al-Cu Alloy, Corrosion, 2016, 72, p 719–731

    CAS  Google Scholar 

  4. C.H. Chang, S.L. Lee, J.C. Lin, M.S. Yeh, and R.R. Jeng, Effect of Ag Content and Heat Treatment on the Stress Corrosion Cracking of Al-4.6 Cu-0.3 Mg Alloy, Mater. Chem. Phys., 2005, 91, p 454–462

    CAS  Google Scholar 

  5. A.M. Al-Obaisi, E.A. El-Danaf, A.E. Ragab, and M.S. Soliman, Precipitation Hardening and Statistical Modeling of the Aging Parameters and Alloy Compositions in Al-Cu-Mg-Ag Alloys, J. Mater. Eng. Perform., 2016, 25(6), p 2432–2444

    CAS  Google Scholar 

  6. M. Gazizov and R. Kaibyshev, Effect of Pre-straining on the Aging Behavior and Mechanical Properties of an Al-Cu-Mg-Ag Alloy, Mater. Sci. Eng., A, 2015, 625, p 119–130

    CAS  Google Scholar 

  7. S. Bai, X. Zhou, Z. Liu, P. Ying, M. Liu, and S. Zeng, Atom Probe Tomography Study of Mg-Dependent Precipitation of Ω Phase in Initial Aged Al-Cu-Mg-Ag Alloys, Mater. Sci. Eng., A, 2015, 637, p 183–188

    CAS  Google Scholar 

  8. S.J. Kang, J.M. Zuo, H.N. Han, and M. Kim, Ab Initio Study of Growth Mechanism of Omega Precipitates in Al-Cu-Mg-Ag Alloy and Similar Systems, J. Alloys Compd., 2018, 737, p 207–212

    CAS  Google Scholar 

  9. A. Balbo, A. Frignani, V. Grassi, and F. Zucchi, Electrochemical Behaviour of AA2198 and AA2139 in Neutral Solutions, Mater. Corros., 2015, 66, p 796–802

    CAS  Google Scholar 

  10. J.A. Moreto, C.E.B. Marino, W.W. BoseFilho, L.A. Rocha, and J.C.S. Fernandes, SVET, SKP and EIS Study of the Corrosion Behaviour of High Strength Al and Al-Li Alloys Used in Aircraft Fabrication, Corros. Sci., 2014, 84, p 30–41

    CAS  Google Scholar 

  11. I.L. Muller and J.R. Galvele, Pitting Potential of High Purity Binary Aluminium Alloys-I: Al-Cu Alloys—Pitting and Intergranular Corrosion, Corros. Sci., 1977, 17, p 179–193

    CAS  Google Scholar 

  12. D.A. Little, B.J. Connolly, and J.R. Scully, An Electrochemical Framework to Explain the Intergranular Stress Corrosion Behavior in Two Al-Cu-Mg-Ag Alloys as a Function of Aging, Corros. Sci., 2007, 49, p 347–372

    CAS  Google Scholar 

  13. J.J. Pang, F.C. Liu, J. Liu, M.J. Tan, and D.J. Blackwood, Friction Stir Processing of Aluminium Alloy AA7075: Microstructure, Surface Chemistry and Corrosion Resistance, Corros. Sci., 2016, 106, p 217–228

    CAS  Google Scholar 

  14. S.K. Kairy, B. Rouxel, J. Dumbre, J. Lamb, T.J. Langan, T. Dorin, and N. Birbilis, Simultaneous Improvement in Corrosion Resistance and Hardness of a Model 2xxx Series Al-Cu Alloy with the Microstructural Variation Caused by Sc and Zr Additions, Corros. Sci., 2019, 158, p 108095

    CAS  Google Scholar 

  15. R. Correa, H. Sánchez, and J.A. Calderón, Improvement of Micro-hardness and Electrochemical Properties of Al-4% Cu-0.5% Mg Alloy by Ag Addition, Rev. Fac. Univ. Antioquia, 2011, 61, p 19–28

    CAS  Google Scholar 

  16. H. Ezuber, A. El-Houd, and F. El-Shawesh, A Study on the Corrosion Behavior of Aluminum Alloys in Seawater, Mater. Des., 2008, 29, p 801–805

    CAS  Google Scholar 

  17. A.B. Cook, Z. Barrett, S.B. Lyon, H.N. McMurray, J. Walton, and G. Williams, Calibration of the Scanning Kelvin Probe Force Microscope under Controlled ENVIRONMENTAL Conditions, Electrochim. Acta, 2012, 66, p 100–105

    CAS  Google Scholar 

  18. D.S. Kharitonov, C. Örnek, P.M. Claesson, J. Sommertune, I.M. Zharskii, I.I. Kurilo, and J. Pan, Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates: Microstructure Characterization and Corrosion Analysis, J. Electrochem. Soc., 2018, 165, p C116–C126

    CAS  Google Scholar 

  19. R. Grilli, M.A. Baker, J.E. Castle, B. Dunn, and J.F. Watts, Localized Corrosion of a 2219 Aluminium Alloy Exposed to a 3.5% NaCl Solution, Corros. Sci., 2010, 52, p 2855–2866

    CAS  Google Scholar 

  20. J. Li and J. Dang, A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys, Metals, 2017, 7, p 1–19

    Google Scholar 

  21. X.Y. Liu, Q.L. Pan, Z.L. Lu, S.F. Cao, Y.B. He, and W.B. Li, Effects of Solution Treatment on the Microstructure and Mechanical Properties of Al-Cu-Mg-Ag Alloy, Mater. Des., 2010, 31, p 4392–4397

    CAS  Google Scholar 

  22. K.S. Ghosh and K. Tripati, Microstructural Characterization and Electrochemical Behavior of AA2014 Al-Cu-Mg-Si Alloy of Various Tempers, J. Mater. Eng. Perform., 2018, 27, p 5926–5937

    CAS  Google Scholar 

  23. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacparzak, Binary Alloy Phase Diagrams ASM International, Mater Park, 1990, 3, p 1442–1446

    Google Scholar 

  24. S.S. Wang, H.L. Yang, J.T. Yang, J.F. Jiang, S.L. Chen, D.N. Dai, G.S. Seidman, L. Frankel, and L. Zhen, Effect of Cu Content and Aging Conditions on Pitting Corrosion Damage of 7xxx Series Aluminum Alloys, J. Electrochem. Soc., 2015, 162, p C150–C160

    CAS  Google Scholar 

  25. Y. Jin, M. Liu, C. Zhang, C. Leygraf, L. Wen, and J. Pan, First-Principle Calculation of Volta Potential of Intermetallic Particles in Aluminum Alloys and Practical Implications, J. Electrochem. Soc., 2017, 164, p C465–C473

    CAS  Google Scholar 

  26. R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, and I. Rodríguez, Pitting Corrosion of Rheocast A356 Aluminium Alloy in 3.5 wt.% NaCl Solution, Corros. Sci., 2013, 73, p 342–355

    CAS  Google Scholar 

  27. J. Li, B. Hurley, and R. Buchheit, Effect of Temperature on the Localized Corrosion of AA2024-T3 and the Electrochemistry of Intermetallic Compounds during Exposure to a Dilute NaCl Solution, Corrosion, 2016, 72, p 1281–1291

    CAS  Google Scholar 

  28. D.K. Xu, N. Birbilis, D. Lashansky, P.A. Rometsch, and B.C. Muddle, Effect of Solution Treatment on the Corrosion Behaviour of Aluminium Alloy AA7150: Optimisation for Corrosion Resistance, Corros. Sci., 2011, 53, p 217–225

    CAS  Google Scholar 

  29. Y. Zhu, K. Sun, and G.S. Frankel, Intermetallic Phases in Aluminum Alloys and Their Roles in Localized Corrosion, J. Electrochem. Soc., 2018, 165, p C807–C820

    CAS  Google Scholar 

  30. Y.C. Lin, G. Liu, M.S. Chen, Y.C. Huang, Z.G. Chen, X. Ma, Y.Q. Jiang, and J. Li, Corrosion Resistance of a Two-Stage Stress-Aged Al-Cu-Mg Alloy: Effects of Stress-Aging Temperature, J. Alloys Compd., 2016, 657, p 855–865

    CAS  Google Scholar 

  31. D. Zhu and W.J. van Ooij, Corrosion Protection of AA 2024-T3 by Bis-(Ref 3-(triethoxysilyl) propyl) Tetrasulfide in Neutral Sodium Chloride Solution, Part 1: Corrosion of AA 2024-T3, Corros. Sci., 2003, 45, p 2163–2175

    CAS  Google Scholar 

  32. J. Kang, R. Fu, G. Luan, C. Dong, and M. He, In-Situ Investigation on the Pitting Corrosion Behavior of Friction Stir Welded Joint of AA2024-T3 Aluminium Alloy, Corros. Sci., 2010, 52, p 620–626

    CAS  Google Scholar 

  33. B. Wang, J. Liu, M. Yin, Y. Xiao, X.H. Wang, and J.X. He, Comparison of Corrosion Behavior of Al-Mn and Al-Mg Alloys in Chloride Aqueous Solution, Mater. Corros., 2016, 67, p 51–59

    Google Scholar 

  34. A. Bakkar and V. Neubert, Corrosion Characterisation of Alumina–Magnesium Metal Matrix Composites, Corros. Sci., 2007, 49, p 1110–1130

    CAS  Google Scholar 

  35. S. Han, S. Mu, and J. Du, Effects of Ce and Y on Modification and Corrosion Behavior of Mg-0.8% Si Alloy: A Correlation Study, Corrosion, 2019, 75, p 1100–1109

    CAS  Google Scholar 

  36. M. Trueba and S.P. Trasatti, Study of Al Alloy Corrosion in Neutral NaCl by the Pitting Scan Technique, Mater. Chem. Phys., 2010, 121, p 523–533

    CAS  Google Scholar 

  37. U. Trdan and J. Grum, Evaluation of Corrosion Resistance of AA6082-T651 Aluminium Alloy After Laser Shock Peening by Means of Cyclic Polarisation and ElS Methods, Corros. Sci., 2012, 59, p 324–333

    CAS  Google Scholar 

  38. C. Li, Q. Pan, Y. Shi, Y. Wang, and B. Li, Influence of Aging Temperature on Corrosion Behavior of Al-Zn-Mg-Sc-Zr Alloy, Mater. Des., 2014, 55, p 551–559

    CAS  Google Scholar 

  39. S.C. Ferreira, L.A. Rocha, E. Ariza, P.D. Sequeira, Y. Watanabe, and J.C.S. Fernandes, Corrosion Behaviour of Al/Al3Ti and Al/Al3Zr Functionally Graded Materials Produced by Centrifugal Solid-Particle Method: Influence of the Intermetallics Volume Fraction, Corros. Sci., 2011, 53, p 2058–2065

    CAS  Google Scholar 

  40. H. Shi, E.H. Han, and F. Liu, Corrosion Protection of Aluminium Alloy 2024-T3 in 0.05 M NaCl by Cerium Cinnamate, Corros. Sci., 2011, 53, p 2374–2384

    CAS  Google Scholar 

  41. K. Jafarzadeh, T. Shahrabi, and M.G. Hosseini, EIS Study on Pitting Corrosion of AA5083-H321 Aluminum-Magnesium Alloy in Stagnant 3.5% NaCl Solution, J. Mater. Sci. Technol., 2008, 24, p 215–219

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Key Research and Development Program of China (2016YFB0300900), the National Key Fundamental Research Project of China (2012CB619506-3) and National Natural Science Foundation of China (51171209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Z., Bai, S. et al. Combined Effect of Ag and Mg Additions on Localized Corrosion Behavior of Al-Cu Alloys with High Cu Content. J. of Materi Eng and Perform 29, 6108–6117 (2020). https://doi.org/10.1007/s11665-020-05072-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05072-6

Keywords

Navigation