Skip to main content
Log in

Effect of Twin-Induced Texture Evolution on Corrosion Resistance of Extruded ZK60 Magnesium Alloy in Simulated Body Fluid

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Different pre-compression deformations are carried out along the extrusion direction of ZK60 magnesium alloy to change the initial texture of the material. The corrosion resistance of ZK60 magnesium alloy associated with twin-induced texture evolution was investigated by immersion and electrochemical experiments in simulated body fluid (SBF). The results showed that a small amount of twins decreased corrosion resistance, while high density twins improved the corrosion resistance of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.M. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734

    CAS  Google Scholar 

  2. Y.F. Zheng, X.N. Gu, and F. Witt, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1–34

    Google Scholar 

  3. J.X. Yang, F.Z. Cui, and I.S. Lee, Surface Modifications of Magnesium Alloys for Biomedical Applications, Ann. Biomed. Eng., 2011, 39, p 1857–1871

    Google Scholar 

  4. S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Mater. Sci. Eng. C, 2016, 68, p 948–963

    CAS  Google Scholar 

  5. G.L. Song and Z.Q. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta, 2010, 55, p 4148–4161

    CAS  Google Scholar 

  6. S. Feliu, Jr., A. Samaniego, A.A. El-Hadad, and I. Llorente, The Effect of NaHCO3 Treatment Time on the Corrosion Resistance of Commercial Magnesium Alloys AZ31 and AZ61 in 0.6 M NaCl Solution, Corros. Sci., 2013, 67, p 204–216

    CAS  Google Scholar 

  7. M. Jöson and D. Persson, The Influence of the Microstructure on the Atmospheric Corrosion Behaviour of Magnesium Alloys AZ91D and AM50, Corros. Sci., 2010, 52, p 1077–1085

    Google Scholar 

  8. X. Wu, H. Li, J. Lu, Y. Li, C. Yang, Y. Cen, Z. Yang, and R. Song, MoS2 Additive to the MAO Al2O3 Composite Coatings with Enhanced Mechanical Performances, Mater. Res. Express., 2019, 6, p 016543

    Google Scholar 

  9. R. Ambat, N.N. Aung, and W. Zhou, Evaluation of Microstructural Effects on Corrosion Behaviour of AZ91D Magnesium Alloy, Corros. Sci., 2000, 42, p 1433–1455

    CAS  Google Scholar 

  10. T. Zhang, Y. Li, and F.H. Wang, Roles of β-Phase in the Corrosion Process of AZ91D Magnesium Alloy, Corros. Sci., 2006, 48, p 1249–1264

    CAS  Google Scholar 

  11. M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Influence of the β-Phase Morphology on the Corrosion of the Mg Alloy AZ91, Corros. Sci., 2008, 50, p 1939–1953

    CAS  Google Scholar 

  12. D. Eliezer, P. Uzan, and E. Aghion, Effect of Second Phases on the Corrosion Behavior of Magnesium Alloy, Mater. Sci. Forum, 2003, 419-422(II), p 857–866

    CAS  Google Scholar 

  13. N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 589–594

    CAS  Google Scholar 

  14. H.Y. Hsiao and W.T.J. Tsai, Effect of Heat Treatment on Anodization and Electrochemical Behaviour of AZ91D Magnesium Alloy, J. Mater. Res., 2005, 20, p 2763–2771

    CAS  Google Scholar 

  15. G.L. Song and Z.Q. Xu, Effect of Microstructure Evolution on Corrosion of Different Crystal Surfaces of AZ31 Mg Alloy in a Chloride Containing Solution, Corros. Sci., 2012, 54, p 97–105

    CAS  Google Scholar 

  16. G. Song, R. Mishra, and Z. Xu, Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy, Electrochem. Commun., 2010, 12, p 1009–1012

    CAS  Google Scholar 

  17. R. Xin, Y. Luo, A. Zuo, J. Gao, and Q. Liu, Texture Effect on Corrosion Behavior of AZ31 Mg Alloy in Simulated Physiological Environment, Mater. Lett., 2012, 72, p 1–4

    CAS  Google Scholar 

  18. M. Liu, D. Qiu, M.C. Zhao, G. Song, and A. Atrens, The Effect of Crystallographic Orientation on the Active Corrosion of Pure Magnesium, Scr. Mater., 2008, 58, p 421–424

    CAS  Google Scholar 

  19. B.J. Wang, D.K. Xu, J.H. Dong, and W. Ke, Effect of Texture on Biodegradable Behavior of an As-Extruded Mg-3%Al-1%Zn Alloy in Phosphate Buffer Saline Medium, J. Mater. Sci. Technol., 2016, 32, p 646–652

    Google Scholar 

  20. R.I. Rodriguez, J.B. Jordon, and H.M. Rao, Microstructure, Texture, and Mechanical Properties of Friction Stir Spot Welded Rare-Earth Containing ZEK100 Magnesium Alloy Sheets, Mater. Sci. Eng. A, 2014, 618, p 637–644

    CAS  Google Scholar 

  21. R. Xin, B. Li, L. Li, and Q. Liu, Influence of Texture on Corrosion Rate of AZ31 Mg Alloy in 3.5 wt.% NaCl, Mater. Des., 2011, 32, p 4548–4552

    CAS  Google Scholar 

  22. G.L. Song and Z.Q. Xu, Crystal Orientation and Electrochemical Corrosion of Polycrystalline Mg, Corros. Sci., 2012, 63, p 100–112

    CAS  Google Scholar 

  23. G. Zou, Q. Peng, Y. Wang, and B. Liu, The Effect of Extension Twinning on the Electrochemical Corrosion Properties of Mg-Y Alloys, J. Alloys Compd., 2015, 618, p 44–48

    CAS  Google Scholar 

  24. Y. Xiong, Q. Yu, and Y. Jiang, Deformation of Extruded ZK60 Magnesium Alloy under Uniaxial Loading in Different Material Orientations, Mater. Sci. Eng. A, 2018, 710, p 206–213

    CAS  Google Scholar 

  25. S. Dong, Y. Jiang, J. Dong, F. Wang, and W. Ding, Cyclic Deformation and Fatigue of Extruded ZK60 Magnesium Alloy with Aging Effects, Mater. Sci. Eng. A, 2014, 615, p 262–272

    CAS  Google Scholar 

  26. Y. Xiong and Y. Jiang, Fatigue of ZK60 Magnesium Alloy under Uniaxial Loading, Int. J. Fatigue, 2014, 64, p 74–83

    CAS  Google Scholar 

  27. ISO10993.15, Biological Evaluation of Medical Devices-Part 15: Identification and Quantification of Degradation Products from Metals and Alloys, 2000

  28. L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, and E.H. Han, Corrosion Resistance of a Self-Healing Micro-Arc Oxidation/Polymethyltrimethoxysilane Composite Coating on Magnesium Alloy AZ31, Corros. Sci., 2017, 118, p 84–95

    CAS  Google Scholar 

  29. G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, and V. Vivier, An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions, J. Electrochem. Soc., 2007, 154, p C108–C113

    CAS  Google Scholar 

  30. M. Ascencio, M. Pekguleryuz, and S. Omanovic, An Investigation of the Corrosion Mechanisms of WE43 Mg Alloy in a Modified Simulated Body Fluid Solution: The Influence of Immersion Time, Corros. Sci., 2014, 87, p 489–503

    CAS  Google Scholar 

  31. G. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    CAS  Google Scholar 

  32. T. Zhu, X.H. Gong, Y. Xiong, and X.X. Hu, Effect of Initial Orientation on Corrosion Behavior of AZ80 Magnesium Alloy in Simulated Body Fluid, Metals Mater. Int., 2020, https://doi.org/10.1007/s12540-020-00611-1

    Article  Google Scholar 

  33. X. Li, Z. Weng, W. Yuan, X. Luo, H.M. Wong, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, and P.K. Chu, Corrosion Resistance of Dicalcium Phosphate Dihydrate/Poly(Lactic-Co-Glycolic Acid) Hybrid Coating on AZ31 Magnesium Alloy, Corros. Sci., 2016, 102, p 209–221

    Google Scholar 

  34. Y. Song, D. Shan, R. Chen, F. Zhang, and E.H. Han, Biodegradable Behaviors of AZ31 Magnesium Alloy in Simulated Body Fluid, Mater. Sci. Eng. C, 2009, 29, p 1039–1045

    CAS  Google Scholar 

  35. M. Taheri, M. Danaie, and J.R. Kish, TEM Examination of the Film Formed on Corroding Mg Prior to Breakdown, J. Electrochem. Soc., 2014, 161, p C89–C94

    CAS  Google Scholar 

  36. K. Hagihara, M. Okubo, M. Yamasaki, and T. Nakano, Crystal-Orientation-Dependent Corrosion Behaviour of Single Crystals of a Pure Mg and Mg-Al and Mg-Cu Solid Solutions, Corros. Sci., 2016, 109, p 68–85

    CAS  Google Scholar 

  37. J. Ozaki, M. Yosida, and S. Horibe, The Effect of Pre-Compressive Strain on the Fatigue Life of the AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2014, 604, p 192–195

    CAS  Google Scholar 

  38. Y. Xiong, Q. Yu, and Y. Jiang, Cyclic Deformation and Fatigue of Extruded AZ31B Magnesium Alloy under Different Strain Ratios, Mater. Sci. Eng. A, 2016, 649, p 93–103

    CAS  Google Scholar 

  39. Y. Xiong, Q. Yu, and Y. Jiang, An Experimental Study of Cyclic Plastic Deformation of Extruded ZK60 Magnesium Alloy, Int. J. Plast, 2014, 53, p 107–124

    CAS  Google Scholar 

  40. B. Davepon, J.W. Schultze, U. König, and C. Rosenkranz, Crystallographic Orientation of Single Grains of Polycrystalline Titanium and Their Influence on Electrochemical Processes, Surf. Coat. Technol., 2003, 169-170, p 85–90

    CAS  Google Scholar 

  41. B.Q. Fu, W. Liu, and Z.L. Li, Calculation of the Surface Energy of hcp-Metals with the Empirical Electron Theory, Appl. Surf. Sci., 2009, 255, p 9348–9357

    CAS  Google Scholar 

  42. W. Zhou, T. Shen, and N.N. Aung, Effect of Heat Treatment on Corrosion Behaviour of Magnesium Alloy AZ91D in Simulated Body Fluid, Corros. Sci., 2010, 52, p 1035–1041

    CAS  Google Scholar 

  43. R.S. Lillard, G.F. Wang, and M.I. Baskes, The Role of Metallic Bonding in the Crystallographic Pitting of Magnesium, J. Electrochem. Soc., 2006, 153, p B358–B364

    CAS  Google Scholar 

  44. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper, Science, 2008, 321, p 1066–1069

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the project sponsored by the support from National Natural Science Foundation of China (Nos. 51775502, 51275472) and the Natural Science Foundation of Zhejiang Province (No. LY20E050024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Zhu, T., Yang, J. et al. Effect of Twin-Induced Texture Evolution on Corrosion Resistance of Extruded ZK60 Magnesium Alloy in Simulated Body Fluid. J. of Materi Eng and Perform 29, 5710–5717 (2020). https://doi.org/10.1007/s11665-020-05068-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05068-2

Keywords

Navigation