Skip to main content
Log in

Linear and weakly nonlinear analysis of a ferrofluid layer for an LTNE model with variable gravity and internal heat source

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A ferrofluid saturated porous layer convection problem is studied in the variable gravitational field for a local thermal nonequilibrium (LTNE) model. Internal heating and variation (increasing or decreasing) in gravity with distance through the layer affected the stability of the convective system. The Darcy model is employed for the momentum equation and the LTNE model for the energy equation. The boundaries are considered to be rigid-isothermal and paramagnetic. For the linear stability analysis of the three-dimensional problem, the normal mode has been applied and the eigenvalue problem is solved numerically using Chebyshev pseudospectral method, while weakly nonlinear analysis is carried out with a truncated Fourier series. The effect of different dimensionless parameters on the Rayleigh number has also been studied. We found that the system becomes unstable on the increasing value of nonlinearity index of magnetization (\(M_3\)), porosity-modified conductivity ratio (\(\beta \)), and internal heat parameter (\(\xi \)). It is observed that the system is stabilized by increasing the value of the Langevin parameter (\(\alpha _\mathrm{{L}}\)), variable gravity coefficient (\(\delta \)), and effective heat transfer parameter (\(H_1\)). Runge–Kutta–Gill method has been used for solving the finite-amplitude equations to study the transient behavior of the Nusselt number. Streamlines and isotherms patterns are determined for the steady case and are presented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Stephen PS (1965) Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, Nov 2, 1965. US Patent 3,215,572

  2. Kaiser R, Rosensweig RE (1969) Study of ferromagnetic liquid, vol 1407. National Aeronautics and Space Administration

  3. Rosensweig RE (1971) Magnetic fluid seals, Nov 16, 1971. US Patent 3,620,584

  4. Odenbach S (1995) Microgravity experiments on thermomagnetic convection in magnetic fluids. J Magn Magn Mater 149(1–2):155–157

    Google Scholar 

  5. Martin J, Holt J (2000) Magnetically actuated propellant orientation experiment, controlling fluid motion with magnetic fields in a low-gravity environment. National Aeronautics and Space Administration

  6. Chong TY, Ho KL, Ong BH (2012) Investigations of field instability of ferrofluid in hypergravity and microgravity. AIP Adv 2(1):012138

    Google Scholar 

  7. Rahman H, Suslov SA (2015) Thermomagnetic convection in a layer of ferrofluid placed in a uniform oblique external magnetic field. J Fluid Mech 764:316–348

    MathSciNet  Google Scholar 

  8. Romero-Calvo Á, Hermans TH, Gómez GC, Benítez LP, Gutiérrez MÁH, Castro-Hernández E (2018) Ferrofluid dynamics in microgravity conditions. In: 42nd COSPAR scientific assembly, vol 42

  9. Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, New York

    Google Scholar 

  10. Berkovsky B, Medvedev VF, Krakov MS (1993) Magnetic fluids: engineering applications. Oxford Univ. Press, Oxford

    Google Scholar 

  11. Finlayson BA (1970) Convective instability of ferromagnetic fluids. J Fluid Mech 40(4):753–767

    MATH  Google Scholar 

  12. Blennerhassett PJ, Lin F, Stiles PJ (1991) Heat transfer through strongly magnetized ferrofluids. Proc R Soc Lond A 433(1887):165–177

    MATH  Google Scholar 

  13. Schwab L, Hildebrandt U, Stierstadt K (1983) Magnetic Bénard convection. J Magn Magn Mater 39(1–2):113–114

    Google Scholar 

  14. Lalas DP, Carmi S (1971) Thermoconvective stability of ferrofluids. Phys. Fluids 14(2):436–438

    Google Scholar 

  15. Stiles PJ, Kagan M (1990) Thermoconvective instability of a ferrofluid in a strong magnetic field. J Colloid Interface Sci 134(2):435–448

    Google Scholar 

  16. Kaloni PN, Lou JX (2004) Convective instability of magnetic fluids. Phys Rev E 70(2):026313

    Google Scholar 

  17. Sunil Mahajan A (2008) A nonlinear stability analysis for magnetized ferrofluid heated from below. Proc R Soc Lond A 464(2089):83–98

    MathSciNet  MATH  Google Scholar 

  18. Nanjundappa CE, Shivakumara IS, Arunkumar R, Tadmor R (2015) Ferroconvection in a porous medium with vertical throughflow. Acta Mech 226(5):1515–1528

    MathSciNet  MATH  Google Scholar 

  19. Vaidyanathan G, Sekar R, Balasubramanian R (1991) Ferroconvective instability of fluids saturating a porous medium. Int J Eng Sci 29(10):1259–1267

    MATH  Google Scholar 

  20. Sunil Mahajan A (2009) A nonlinear stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium. Transp Porous Media 76(3):327–343

    MathSciNet  MATH  Google Scholar 

  21. Shivakumara IS, Ravisha M, Ng CO, Varun VL (2015) Porous ferroconvection with local thermal nonequilibrium temperatures and with cattaneo effects in the solid. Acta Mech 226(11):3763–3779

    MathSciNet  MATH  Google Scholar 

  22. Rudraiah N, Sekhar GN (1991) Convection in magnetic fluids with internal heat generation. J Heat Transfer 113(1):122–127

    Google Scholar 

  23. Nanjundappa CE, Ravisha M, Lee J, Shivakumara IS (2011) Penetrative ferroconvection in a porous layer. Acta Mech 216(1):243–257

    MATH  Google Scholar 

  24. Kumar G, Narayana PAL, Sahu KC (2020) Linear and nonlinear thermosolutal instabilities in an inclined porous layer. Proc R Soc A 476(2233):20190705

    MathSciNet  Google Scholar 

  25. Mahajan A, Parashar H (2020) Linear and weakly nonlinear stability analysis on a rotating anisotropic ferrofluid layer. Phys Fluids 32(2):024101

    Google Scholar 

  26. Banu N, Rees DAS (2002) Onset of Darcy–Bénard convection using a thermal non-equilibrium model. Int J Heat Mass Transf 45(11):2221–2228

    MATH  Google Scholar 

  27. Straughan B (2006) Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc R Soc Lond A 462(2066):409–418

    MathSciNet  MATH  Google Scholar 

  28. Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2007) Onset of convection in a horizontal porous channel with uniform heat generation using a thermal nonequilibrium model. Transp Porous Media 69(3):343–357

    MathSciNet  Google Scholar 

  29. Straughan B (2015) Convection with local thermal non-equilibrium and microfluidic effects. Advances in Mechanics and Mathematics Book Series, Vol 32. Springer, New York

  30. Gandomkar A, Gray K (2018) Local thermal non-equilibrium in porous media with heat conduction. Int J Heat Mass Transf 124:1212–1216

    Google Scholar 

  31. Sunil Sharma P, Mahajan A (2010) Nonlinear ferroconvection in a porous layer using a thermal nonequilibrium model. Special Top Rev Porous Media 1(2):105–121

    Google Scholar 

  32. Lee J, Shivakumara IS, Ravisha M (2011) Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid-saturated porous medium. Transp Porous Media 86(1):103–124

    MathSciNet  Google Scholar 

  33. Chandrasekhar S (2013) Hydrodynamic and hydromagnetic stability. Courier Corporation, New York

    MATH  Google Scholar 

  34. Pradhan GK, Samal PC (1987) Thermal stability of a fluid layer under variable body forces. J Math Anal Appl 122(2):487–495

    MathSciNet  MATH  Google Scholar 

  35. Straughan B (1989) Convection in a variable gravity field. J Math Anal Appl 140(2):467–475

    MathSciNet  MATH  Google Scholar 

  36. Chen CF, Chen F (1992) Onset of salt finger convection in a gravity gradient. Phys Fluids A 4(2):451–452

    Google Scholar 

  37. Kaloni PN, Qiao Z (2001) Non-linear convection in a porous medium with inclined temperature gradient and variable gravity effects. Int J Heat Mass Transf 44(8):1585–1591

    MATH  Google Scholar 

  38. Harfash AJ (2014) Three-dimensional simulations for convection in a porous medium with internal heat source and variable gravity effects. Transp Porous Media 101(2):281–297

    MathSciNet  Google Scholar 

  39. Mahajan A, Sharma MK (2018) Convection in a magnetic nanofluid saturating a porous medium under the influence of a variable gravity field. Eng Sci Technol 21(3):439–450

    Google Scholar 

  40. Veronis G (1966) Large-amplitude Bénard convection. J Fluid Mech 26(1):49–68

    MathSciNet  MATH  Google Scholar 

  41. Veronis G (1966) Motions at subcritical values of the Rayleigh number in a rotating fluid. J Fluid Mech 24(3):545–554

    MathSciNet  Google Scholar 

  42. Veronis G (1968) Large-amplitude Bénard convection in a rotating fluid. J Fluid Mech 31(1):113–139

    Google Scholar 

  43. Nield DA, Bejan A (2006) Convection in porous media, vol 3. Springer, New York

    MATH  Google Scholar 

  44. Shliomis MI (2002) Convective instability of magnetized ferrofluids: influence of magnetophoresis and Soret effect. In: Thermal nonequilibrium phenomena in fluid mixtures. Springer, New York, pp 355–371

  45. Nield DA (1998) Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J Porous Media 1:181–186

    MATH  Google Scholar 

  46. Straughan B (1991) The energy method, stability, and nonlinear convection. Springer, New York

    MATH  Google Scholar 

  47. Kaloni PN, Lou JX (2002) On the stability of thermally driven shear flow of an Oldroyd-B fluid heated from below. J Nonnewton Fluid Mech 107(1–3):97–110

    MATH  Google Scholar 

  48. Rossby HT (1966) An experimental study of Bénard convection with and without rotation. Massachusetts Institute of Technology Department of Geology and Geophysics, Cambridge

  49. Schwab L (1989) Konvektion in ferrofluiden. Doctoral Dissertation, University of Munich, Germany

  50. Bozhko AA, Putin GF (2003) Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2):147–169

    Google Scholar 

  51. Snyder SM, Cader T, Finlayson BA (2003) Finite element model of magnetoconvection of a ferrofluid. J Magn Magn Mater 262(2):269–279

    Google Scholar 

  52. Tangthieng C, Finlayson BA, Maulbetsch J, Cader T (1999) Heat transfer enhancement in ferrofluids subjected to steady magnetic fields. J Magn Magn Mater 201(1–3):252–255

    Google Scholar 

  53. Rionero S, Straughan B (1990) Convection in a porous medium with internal heat source and variable gravity effects. Int J Eng Sci 28(6):497–503

    MathSciNet  MATH  Google Scholar 

  54. Nanjundappa CE, Shivakumara IS, Lee J, Ravisha M (2011) Effect of internal heat generation on the onset of Brinkman–Bénard convection in a ferrofluid saturated porous layer. Int J Therm Sci 50(2):160–168

    Google Scholar 

Download references

Acknowledgements

Financial assistance to Hemant Parashar from institute fellowship is gratefully acknowledged. The authors are grateful to the anonymous referees for the critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Parashar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, A., Parashar, H. Linear and weakly nonlinear analysis of a ferrofluid layer for an LTNE model with variable gravity and internal heat source. J Eng Math 124, 11–39 (2020). https://doi.org/10.1007/s10665-020-10062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-020-10062-7

Keywords

Mathematics Subject Classification

Navigation