Skip to main content
Log in

Studies of the Dirac Point in a GO/P3HT Nanocomposite Thin-Film Phototransistor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Developing a numerical model for thin-film transistors has become significant for optoelectronic applications. In this study, we describe the shift of the Dirac point in a graphene oxide thin-film phototransistor doped with various ratios of poly (3-hexylthiophene) (P3HT) (0.01 and 0.05). According the electrical characteristics of graphene oxide/poly (3-hexylthiophene) thin-film transistors and based on the proposed model, we simulate the carrier concentration, the Fermi level (Ef), the mobility (μ), and the conductivity (σ) of charge carriers, the square resistance, and the Seebeck coefficient as a function of the applied gate voltage in the dark and under the illumination of 100 mW/cm2, using Matlab/Simulink. The results show that, when applying a negative gate voltage, the Fermi level of graphene will shift below the Dirac point, due to the electrical field effect induced by the P3HT molar ratios and the illumination effect. This shift is exhibited more obviously in the mainly simulated parameters, and can be explained by the molar ratios of P3HT, which modulate the displacement field to allow the opening of a transport band gap through a Colombian force created by the oxygen groups. This work can provide a theoretical basis for analyzing the characteristics of these components for application in the logic circuit domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, and A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

    CAS  Google Scholar 

  2. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

    Article  Google Scholar 

  3. A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  4. S. Pang, Y. Hernandez, X. Feng, and K. Müllen, Adv. Mater. 23, 2779 (2011).

    Article  CAS  Google Scholar 

  5. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, Nano Lett. 9, 4359 (2009).

    Article  CAS  Google Scholar 

  6. W. Wang, Q. Zhang, J. Li, X. Liu, L. Wang, J. Zhu, W. Luo, and W. Jiang, RSC Adv. 5, 8988 (2015).

    Article  CAS  Google Scholar 

  7. H. Bark, M. Ko, M. Lee, W. Lee, B. Hong, and H. Lee, ACS Sustain. Chem. Eng. 6, 7468 (2018).

    Article  CAS  Google Scholar 

  8. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).

    Article  CAS  Google Scholar 

  9. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).

    Article  CAS  Google Scholar 

  10. S. Wang, Z. Jin, X. Huang, S. Peng, D. Zhang, and J. Shi, Mater. Res. Express 3, 095602 (2016).

    Article  Google Scholar 

  11. H. Medina, Y.C. Lin, D. Obergfell, and P.W. Chiu, Adv. Funct. Mater. 21, 2687 (2011).

    Article  CAS  Google Scholar 

  12. M. Radosavljević, S. Heinze, J. Tersoff, and Ph Avouris, Appl. Phys. Lett. 83, 2435 (2003).

    Article  Google Scholar 

  13. Y. Wu, D.B. Farmer, W. Zhu, S.J. Han, C.D. Dimitrakopoulos, A.A. Bol, P. Avouris, and Y.M. Lin, ACS Nano 6, 2610 (2012).

    Article  CAS  Google Scholar 

  14. S.J. Han, Z. Chen, A.A. Bol, and Y. Sun, IEEE Electron Dev. Lett. 32, 812 (2011).

    Article  CAS  Google Scholar 

  15. S. Mansouri, B. Coskun, L. El Mir, A.G. Al-Sehemi, A. Al-Ghamdi, and F. Yakuphanoglu, J. Electron. Mater. 47, 2461–2467 (2018). https://doi.org/10.1007/s11664-018-6081-4.

    Article  CAS  Google Scholar 

  16. W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Phys. Rev. B 80, 35402 (2009).

    Article  Google Scholar 

  17. A. Amirhosseini and R. Safian, IEEE J. Sel. Top. Quant. 24, 1–7 (2018). https://doi.org/10.1109/jstqe.2017.2753043.

    Article  CAS  Google Scholar 

  18. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J.M. Tour, and J. Kono, Nano Lett. 12, 3711 (2012).

    Article  CAS  Google Scholar 

  19. A.R. Jang, E.K. Jeon, D. Kang, G. Kim, B.S. Kim, D.J. Kang, and H.S. Shin, ACS Nano 6, 9207 (2012). https://doi.org/10.1021/nn303539y.

    Article  CAS  Google Scholar 

  20. R. Verma, S. Bhattacharya, and S. Mahapatra, IEEE Trans. Electron Dev. 60, 2695 (2013).

    Article  Google Scholar 

  21. V.E. Dorgan, M.H. Bae, and E. Pop, Appl. Phys. Lett. 97, 082112 (2010).

    Article  Google Scholar 

  22. N.D. Arora and G.S. Gildenblat, IEEE Trans. Electron. Dev. 34, 89 (1987).

    Article  Google Scholar 

  23. K.L. Grosse, M.H. Bae, F. Lian, E. Pop, and W.P. King, Nat. Nanotechnol. 6, 287 (2011).

    Article  CAS  Google Scholar 

  24. M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, AIP Adv. 6, 035113 (2016).

    Article  Google Scholar 

  25. A. Rani, S. Nam, K.A. Oh, and M. Park, Carbon Lett. 11, 90 (2010).

    Article  Google Scholar 

  26. P.L. Levesque, S.S. Sabri, C.M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, Nano Lett. 11, 132 (2011).

    Article  CAS  Google Scholar 

  27. Z.H. Ni, H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, Y.H. Wub, and Z.X. Shena, J. Raman Spectrosc. 41, 479 (2010).

    Article  CAS  Google Scholar 

  28. P. Joshi, H.E. Romero, A.T. Neal, V.K. Toutam, and S.A. Tadigadapa, J. Phys.: Condens. Matter 22, 334214 (2010).

    CAS  Google Scholar 

  29. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  CAS  Google Scholar 

  30. J.C.W. Song, M.S. Rudner, C.M. Marcus, and L.S. Levitov, Nano Lett. 11, 4688 (2011).

    Article  CAS  Google Scholar 

  31. A. Brenneis, F. Schade, S. Drieschner, F. Heimbach, H. Karl, J.A. Garrido, and A.W. Holleitner, Sci. Rep. 6, 35654 (2016).

    Article  CAS  Google Scholar 

  32. Y.M. Zuev, W. Chang, and P. Kim, Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  33. O. Bubnova and X. Crispin, Energy Environ. Sci. 5, 9345 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mansouri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have seemed to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousfi, Y., Jouili, A., Mansouri, S. et al. Studies of the Dirac Point in a GO/P3HT Nanocomposite Thin-Film Phototransistor. J. Electron. Mater. 49, 5808–5815 (2020). https://doi.org/10.1007/s11664-020-08394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08394-2

Keywords

Navigation