Skip to main content
Log in

Structural and Magnetic Properties of Nitrogen Acceptor Co-doped (Zn,Fe)Te Thin Films Grown in Zn-Rich Condition by Molecular Beam Epitaxy (MBE)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the structural and magnetic properties of (Zn,Fe)Te:N thin films grown under Zn-rich condition with Fe composition fixed at 1.4% and N concentrations varying in the range [N] = 1.8 × 1018–5.1 × 1019 cm−3. Structural analysis by x-ray diffraction (XRD) detects some additional extrinsic diffraction peaks possibly from Fe-N compounds in the N-doped film with [N] = 5.1 × 1019 cm−3 only. Accordingly, x-ray absorption fine structure (XAFS) analysis reveals the shifting of Fe atoms from substitutional position for N-doped films with high N concentrations, [N] ≥ 1.8 × 1019 cm−3, whereas N-doped films with intermediate N concentrations [N] ≤ 4.3 × 1018 cm−3 are composed of pure diluted phase with substitutional Fe atoms in the valence state deviating from Fe2+. Magnetization measurement using SQUID confirms drastic change of magnetic properties; the linear dependence of magnetization on magnetic field, typical of van Vleck-type paramagnetism in the film without N-doping changes into room temperature ferromagnetic behaviors with hysteretic magnetization curves for N-doped films. The observed weak room temperature ferromagnetic behavior of the N-doped films with [N] ≤ 4.3 × 1018 cm−3 may reflect the deviation of substitutional Fe valence state from Fe2+ to Fe2+/3+ mixed states. On the other hand, the robust room temperature ferromagnetic behavior exhibited by N-doped films with [N] ≥ 1.8 × 1019 cm−3 may originate from precipitates of Fe-N compounds with Fe being in Fe2+/3+ or other valence state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohno, Science 281, 951 (1998).

    Article  CAS  Google Scholar 

  2. A. Bonanni and T. Dietl, Chem. Soc. Rev. 39, 528 (2010).

    Article  CAS  Google Scholar 

  3. T. Dietl, Nat. Mater. 9, 965 (2010).

    Article  CAS  Google Scholar 

  4. K. Sato, L. Bergqvist, J. Kudmovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, Rev. Mod. Phys. 82, 1633 (2010).

    Article  CAS  Google Scholar 

  5. S. Kumar, Y.J. Kim, B.H. Koo, S.K. Sharma, J.M. Varges, M. Knobel, S. Gautam, K.H. Chae, D.K. Kim, Y.K. Kim, and C.G. Lee, J. Appl. Phys. 105, 07C520 (2009).

    Article  Google Scholar 

  6. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Nat. Mater. 6, 440 (2007).

    Article  CAS  Google Scholar 

  7. T. Dietl and H. Ohno, Mater. Today 9, 18 (2006).

    Article  CAS  Google Scholar 

  8. T. Dietl, K. Sato, T. Fukushima, A. Bonanni, M. Jamet, A. Barki, S. Kuroda, M. Tanaka, P.N. Hai, and H. Katayama-Yoshida, Rev. Mod. Phys. 87, 1311 (2015).

    Article  CAS  Google Scholar 

  9. T. Dietl, Nat. Mater. 5, 673 (2006).

    Article  CAS  Google Scholar 

  10. N. Ozaki, I. Okabayashi, T. Kumekawa, N. Nishizawa, S. Marcet, S. Kuroda, and K. Takita, Appl. Phys. Lett. 87, 192116 (2005).

    Article  Google Scholar 

  11. K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002).

    Article  CAS  Google Scholar 

  12. A. Twardowski, J. Appl. Phys. 67, 5108 (1990).

    Article  CAS  Google Scholar 

  13. E. Malguth, A. Hoffmann, M.R. Philips, Phys. Stat. Sol. (b), 245, 455 (2008)

  14. S. Ishitsuka, T. Domon, R. Akiyama, K. Kanazawa, S. Kuroda, and H. Ofuchi, Phys. Stat. Sol. (c) 11, 1312 (2014).

    Article  CAS  Google Scholar 

  15. T. Nakamura, Y. Sugimura, T. Domon, S. Ishitsuka, K. Kanazawa, H. Ofuchi, and S. Kuroda, J. Cryst. Growth 477, 123 (2017).

    Article  CAS  Google Scholar 

  16. W. Jantsch and G. Hendorfer, J. Cryst. Growth 101, 404 (1990).

    Article  CAS  Google Scholar 

  17. A.J. Szadkowski, J. Phys. Condens. Matter 2, 9853 (1990).

    Article  CAS  Google Scholar 

  18. M. Grun, A. Haury, J. Cibert, and A. Wasiela, J. Appl. Phys. 79, 7386 (1996).

    Article  CAS  Google Scholar 

  19. I. Saha, T. Nakamura, K. Kanazawa, H. Nitani, M. Mitome, and S. Kuroda, J. Cryst. Growth 511, 42 (2019).

    Article  CAS  Google Scholar 

  20. T.E. Westre, P. Kennepohl, J.G. DeWitt, B. Hedman, K.O. Hodgson, and E.I. Solomon, J. Am. Chem. Soc. 119, 6297 (1997).

    Article  CAS  Google Scholar 

  21. S. Bajt, S.R. Sutton, and S. Delaney, Geochim. Cosmochim. Acta 58, 5209 (1994).

    Article  CAS  Google Scholar 

  22. G. Calas and J. Petiau, Solid State Commun. 48, 625 (1983).

    Article  CAS  Google Scholar 

  23. M. Wilke, F. Farges, P.E. Petit, G.E. Brown, and F. Martin, Am. Miner. J. Ear. Plan. Mater. 86, 714 (2001).

    CAS  Google Scholar 

  24. M. Rovezzi, F. D’Acapito, A. Navarro-Quezada, B. Faina, T. Li, A. Bonanni, F. Filippone, A.A. Bonapasta, and T. Dietl, Phys. Rev. B 79, 195209 (2008).

    Article  Google Scholar 

  25. H. Jacobs, D. Rechenbach, and U. Zachwieja, J. Alloys Compd. 227, 10 (1995).

    Article  CAS  Google Scholar 

  26. K.H. Jack, Proc. R. Soc. Lond. Ser. A 208, 216 (1951).

    Article  CAS  Google Scholar 

  27. H. Kobayashi, Y. Nishio, K. Kanazawa, S. Kuroda, M. Mitome, and Y. Bando, Phys. B Condens. Matter 407, 2947 (2012).

    Article  CAS  Google Scholar 

  28. T. Baron, K. Saminadayar, and M. Magnea, J. Appl. Phys. 83, 1354 (1998).

    Article  CAS  Google Scholar 

  29. A. Twardowski, A. Lewicki, M. Arciszewska, W.J.M. de Jouge, H.J.M. Swagten, and M. Demianiuk, Phys. Rev. B 38, 10749 (1988).

    Article  CAS  Google Scholar 

  30. B. Kubaschewski, Iron-Binary phase Diagrams (New York: Springer, 1982), p. 67.

    Google Scholar 

  31. N. Terada, Y. Hoshi, M. Naoe, and S. Yamanaka, IEEE Trans. Magn. 20, 1451 (1984).

    Article  Google Scholar 

  32. K. Sato, T. Fukushima, and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 46, L682 (2007).

    Article  CAS  Google Scholar 

  33. T. Devillers, M. Jamet, A. Barski, V. Poydenot, P. Bayle-Guillemaud, E. Belet-Amalric, S. Cherifi, and J. Cibert, Phys. Rev. B 76, 205306 (2007).

    Article  Google Scholar 

  34. A. Bonanni, M. Kiecana, C. Simbrunner, T. Li, M. Sawicki, M. Wegscheider, M. Quast, H. Przybylimka, A. Navarro-Quezada, R. Jakiela, A. Wolos, W. Jantsch, and T. Dietl, Phys. Rev. B 75, 125210 (2007).

    Article  Google Scholar 

  35. K.R. Nikolaev, I.N. Krivorotov, E.D. Dahlberg, V.A. Vas’ko, S. Urazhdin, R. Loloee, and W.P. Pratt Jr, Appl. Phys. Lett. 82, 4534 (2003).

    Article  CAS  Google Scholar 

  36. K.H. Jack, Proc. R. Soc. Lond. Ser. A 208, 200 (1951).

    Article  CAS  Google Scholar 

  37. K. Mitsuoka, H. Miyajima, H. Ino, and S. Chikazumi, J. Phys. Soc. Jpn. 53, 2381 (1984).

    Article  CAS  Google Scholar 

  38. M. Takahashi, Y. Takahashi, and H. Shoji, IEEE Trans. Magn. 37, 2179 (2001).

    Article  CAS  Google Scholar 

  39. N. Ji, M.S. Osofsky, V. Lauter, L.F. Allard, X. Li, K.L. Jensen, H. Ambaye, E. Lara-Curzio, and J.P. Wang, Phys. Rev. B 84, 245310 (2011).

    Article  Google Scholar 

  40. I. Dirba, P. Komissinskiy, O. Gutfleisch, and L. Alff, J. Appl. Phys. 117, 173911 (2015).

    Article  Google Scholar 

  41. Y. Jiang, M. Al Mehedi, E. Fu, Y. Wang, L.F. Allard, and J.P. Wang, Sci. Rep. 6, 25436 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has partially been supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS). The XAFS measurements were performed at the beamline BL12C of KEK-PF under Proposal Nos. 2017G600 and 2019G575. The SIMS measurement was performed at the AIST Nano-Processing Facility (NPF), supported by the “Nanotechnology Platform Program” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kuroda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, I., Tomohiro, Y., Kanazawa, K. et al. Structural and Magnetic Properties of Nitrogen Acceptor Co-doped (Zn,Fe)Te Thin Films Grown in Zn-Rich Condition by Molecular Beam Epitaxy (MBE). J. Electron. Mater. 49, 5739–5749 (2020). https://doi.org/10.1007/s11664-020-08311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08311-7

Keywords

Navigation