Skip to main content
Log in

Effect of Channel Engineering on Quasi-Static Capacitance-Voltage Characteristics of Double-Gate MOSFET

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The quasi-static capacitance–voltage (QSCV) characteristics of 10-nm-gate-length double-gate N-type metal–oxide–semiconductor field-effect transistors (NMOSFETs) with Si, Ge, InAs, \( {\hbox{In}}_{0.53} {\hbox{Ga}}_{0.47} {\hbox{As}} \), and GaAs as channel materials are studied and simulated using Silvaco ATLAS three-dimensional (3D) technology computer-aided design (TCAD) software. The QSCV approach offers the advantage of immunity against frequency dependence effects and the ability to measure small capacitances in the 100 fF range. In this device, we consider the self-consistent solution of Schrodinger’s equation with Poisson’s equation. The splitting of the conduction band into multiple subbands is considered, while there is no doping in the channel region. The effects of metal gate electrode engineering, channel engineering (Si, Ge, GaAs, \( {\hbox{In}}_{0.53} {\hbox{Ga}}_{0.47} {\hbox{As}} \), and InAs), and different channel thicknesses with \( \left( {{\hbox{Al}}_{2} {\hbox{O}}_{3} } \right) \) as gate oxide having thickness of 0.8 nm on the QSCV characteristics are studied. A comparison of the QSCV characteristics is carried out for the above-mentioned channel materials, revealing a significant reduction in the inversion-mode QSCV characteristics for all the materials due to quantization that results in a decrease in the overall gate-to-channel capacitance and hence increases the threshold voltage of the MOS device. The QSCV characteristics are also useful to measure the oxide thickness, flat-band voltage, threshold voltage, maximum depletion region thickness, charge distribution in the dielectric, interface trap charge, and interface states between the channel and gate oxide before device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tao, C.Z. Zhao, C. Zhao, P. Taechakumput, M. Werner, S. Taylor, and P.R. Chalker, Materials 5, 1005–1032 (2012).

    CAS  Google Scholar 

  2. G.E. Moore, Electronics 38, 114–117 (1965).

    Google Scholar 

  3. J. Robertson and R.M. Wallace, Mater. Sci. Eng. 88, 1–41 (2015).

    Google Scholar 

  4. R.S. Muller, T.I. Kamins, and M. Chan, Device Electronics for Integrated circuits, 3rd ed. (New York: Wiley, 2009).

    Google Scholar 

  5. H. Riel, L.-E. Wernersson, M. Hong, and J.A. del Alamo, Mater. Sci. Soc. 39, 668–677 (2014).

    CAS  Google Scholar 

  6. L. Chang, K.J. Yang, Y.-C. Yeo, I. Polishchu, T.-J. King, and H. Chenming, IEEE Trans. Electron Devices 49, 2228–2295 (2002).

    Google Scholar 

  7. J.C. Ranuárez, M.J. Deen, and C.-H. Chen, Microelectron. Reliab. 46, 1939–1956 (2006).

    Google Scholar 

  8. H. Wong and H. Iwai, Microelectron. Eng. 83, 1867–1904 (2006).

    CAS  Google Scholar 

  9. I. Krylov, D. Ritter, and M. Eizeberg, J. Appl. Phys. 122, 034505–034509 (2017).

    Google Scholar 

  10. X. Kong, R. Liang, X. Zhou, S. Li, M. Wang, H. Liu, J. Wang, W. Wang, and J. Pan, IEEE Trans. Electron Devices 63, 3084–3087 (2016).

    CAS  Google Scholar 

  11. S. Tewari, A. Biswas, and A. Mallik, IEEE Electron Device Lett. 33, 372–374 (2012).

    CAS  Google Scholar 

  12. Z. Jiang, B. Behin-Aein, Z. Krivokapic, M. Povolotskyi, and G. Klimeck, IEEE Trans. Electron Devices 62, 525–531 (2015).

    CAS  Google Scholar 

  13. P.S. Goley and M.K. Hudait, Materials 7, 2301–2339 (2014).

    CAS  Google Scholar 

  14. J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).

    Google Scholar 

  15. M. Moreau, D. Munteanu, and J.L. Autran, Microelectron. Eng. 88, 366–369 (2011).

    CAS  Google Scholar 

  16. S. Rewari, V. Nath, S. Haldar, S.S. Deswal, and R.S. Gupta, Microsyst. Technol. 25, 1–10 (2017).

    Google Scholar 

  17. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243–5275 (2001).

    CAS  Google Scholar 

  18. M. Stucchi, D. Velenis, and G. Katti, IEEE Trans. Instrum. Meas. 61, 1979–1980 (2012).

    CAS  Google Scholar 

  19. A. Gocalinskaa, S. Rubinib, and E. Pelucchia, Appl. Surf. Sci. 383, 19–27 (2016).

    Google Scholar 

  20. F.L. Lie, W. Rachmady, and A.J. Muscat, Microelectron. Eng. 86, 122–127 (2009).

    CAS  Google Scholar 

  21. F.L. Lie, W. Rachmady, and A.J. Muscat, Microelectron. Eng. 87, 1656–1660 (2010).

    CAS  Google Scholar 

  22. M. Rebauda, M.C. Rourea, V. Loupa, P. Rodrigueza, E. Martineza, and P. Besson, ECS Trans. 69, 243–250 (2015).

    Google Scholar 

  23. S. Klejna and S.D. Elliott, J. Phys. Chem. 116, 643–654 (2012).

    CAS  Google Scholar 

  24. J. Alex and T. Gougousia, J. Vac. Sci. Technol. A 34, 031101–031109 (2016).

    Google Scholar 

  25. J. Lin, X. Zhao, D.A. Antoniadis, and J.A. del Alamo, IEEE Electron Device Lett. 35, 440–442 (2014).

    CAS  Google Scholar 

  26. M. Yokoyama, S. Kim, R. Zhang, N. Taoka, Y. Urabe, T. Maeda, H. Takagi, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, Appl. Phys. Express 5, 076501 (2012).

    Google Scholar 

  27. Silvaco ATLAS TCAD Version: ATLAS 5.19.20.R, 2020.

  28. Y.H. Chang, C.A. Lin, Y.T. Liu, T.H. Chiang, H.Y. Lin, M.L. Huang, T.D. Lin, T.W. Pi, J. Kwo, and M. Hong, Appl. Phys. Lett. 101, 172104–172105 (2012).

    Google Scholar 

  29. T.W. Pi, Y.H. Lin, Y.T. Fanchiang, T.H. Chiang, C.H. Wei, Y.C. Lin, G.K. Wertheim, J. Kwo, and M. Hong, Nanotechnology 26, 164001 (2015).

    CAS  Google Scholar 

  30. T.W. Chang, K.Y. Lin, Y.H. Lim, L.B. Young, J. Kwo, and M. Hong, Microelectron. Eng. 178, 199–203 (2017).

    CAS  Google Scholar 

  31. L. Pirro, Electrical characterization and modeling of advanced SOI substrates, Ph.D. Thesis, Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, pp. 91, 2015.

  32. L. Pirro, I. Ionica, G. Ghibaudo, X. Mescot, L. Faraone, and S. Cristoloveanu, J. Appl. Phys. 119, 175702–175710 (2016).

    Google Scholar 

  33. D. Lin, G. Brammertz, S. Sioncke, C. Fleischmann, A. Delabie, K. Martens, H. Bender, T. Conard, W.H. Tseng, J.C. Lin, W.E. Wang, K. Temst, A. Vatomme, J. Mitard, M. Caymax, M. Meuris, M. Heyns, and T. Hoffmann, Enabling the high-performance InGaAs/Ge CMOS: a common gate stack solution (Baltimore: IEEE International Electron Devices Meeting (IEDM), 2010).

    Google Scholar 

  34. R. Omar, B.A. Mohamed, and M. Adel, Eur. Phys. J. Plus 130, 1–13 (2015).

    CAS  Google Scholar 

  35. J. Schmitz, F.N. Cubaynes, R.J. Havens, R. de Kort, A.J. Scholten, and L.F. Tiemeijer, IEEE Electron Device Lett. 24, 37–39 (2003).

    CAS  Google Scholar 

  36. A. Alam, S. Ahmed, M. K. Alam and Quazi D. M. Khosru, C-V Characteristics of n-channel Double Gate MOS Structures Incorporating the Effect of Interface States, in 5th International Conference on Electrical and Computer Engineering (ICECE) 2008, 20-22 December 2008, Dhaka, Bangladesh.

  37. S. Sato, K. Kobayashi, Y. Mori, D. Hisamoto, and A. Shima, Jpn. J. Appl. Phys. 59, 4 (2020).

    Google Scholar 

  38. B. Razavi, Design of Analog CMOS Integrated Circuits (New York: Tata McGraw-Hill, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Vohra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjay, Prasad, B. & Vohra, A. Effect of Channel Engineering on Quasi-Static Capacitance-Voltage Characteristics of Double-Gate MOSFET. J. Electron. Mater. 49, 5816–5823 (2020). https://doi.org/10.1007/s11664-020-08307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08307-3

Keywords

Navigation