Skip to main content
Log in

Mechanical Properties of Two-Dimensional Materials (Graphene, Silicene and MoS2 Monolayer) Upon Lithiation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The mechanical stability of electrode materials in lithium-ion batteries (LIBs) is critical for their safe usage. Two-dimensional (2D) materials have been widely studied to be used as electrode materials for LIBs. In this paper, the mechanical properties of several typical 2D materials, including graphene, silicene and MoS2 monolayer upon lithium intercalation were studied, based on the density functional theory calculations with the model developed by Topsakal and Ciraci (Appl Phys Lett 96:091912, 2010). It was found that the in-plane stiffness of 2D materials decreases with increases of lithium concentration. In-plane stiffness decreased about 9.8% at lithium concentration of 0.184 Li/Å2 for graphene and 6.0% at a concentration of 0.153 Li/Å2 for silicene. The evolution of in-plane stiffness of MoS2 monolayer as a function of lithium concentration and electron-doping concentration were compared. The in-plane stiffness of MoS2 monolayer decreased with increases of Li and electron concentration, which revealed that the electron doping effect is the mechanism causing the decrease of the mechanical stability of electrode materials upon lithiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lv, Z. Li, Y. Deng, Q.H. Yang, and F. Kang, Energy Storage Mater. 2, 107 (2016).

    Google Scholar 

  2. H. Yildirim, A. Kinaci, Z.J. Zhao, M.K. Chan, and J.P. Greeley, ACS Appl. Mater. Interfaces 6, 21141 (2014).

    CAS  Google Scholar 

  3. G. Li, B. Huang, Z. Pan, X. Su, Z. Shao, and L. An, Energy Environ. Sci. 12, 2030 (2019).

    CAS  Google Scholar 

  4. Y. Aierken, C. Sevik, O. Gülseren, F.M. Peeters, and D. Çakır, J. Mater. Chem. A 6, 2337 (2018).

    CAS  Google Scholar 

  5. B. Wang, J. Ryu, S. Choi, G. Song, D. Hong, C. Hwang, X. Chen, B. Wang, W. Li, H. Song, S. Park, and R.S. Ruoff, ACS Nano 12, 1739 (2018).

    CAS  Google Scholar 

  6. S. Xu, X. Fan, J. Liu, D.J. Singh, Q. Jiang, and W. Zheng, Phys. Chem. Chem. Phys. 20, 8887 (2018).

    CAS  Google Scholar 

  7. J. Zhuang, X. Xu, G. Peleckis, W. Hao, S.X. Dou, and Y. Du, Adv. Mater. 29, 1606716 (2017).

    Google Scholar 

  8. B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Electrochim. Acta 213, 865 (2016).

    CAS  Google Scholar 

  9. X.X.C. Chen and B. Anasori, Angew. Chem. Int. Edit. 130, 1864 (2018).

    Google Scholar 

  10. C. Lee, X.D. Wei, J.W. Kysar, and H. Hone, Science 321, 385 (2008).

    CAS  Google Scholar 

  11. E. Pollak, B. Geng, K.J. Jeon, I.T. Lucas, T.J. Richardson, F. Wang, and R. Kostecki, Nano Lett. 10, 3386 (2010).

    CAS  Google Scholar 

  12. X. Fan, W.T. Zheng, and J.L. Kuo, ACS Appl. Mater. Interfaces 4, 2432 (2012).

    CAS  Google Scholar 

  13. X. Lin and J. Ni, Phys. Rev. B 86, 075440 (2012).

    Google Scholar 

  14. L. Miao, J. Wu, J. Jiang, and P. Liang, J. Phys. Chem. C 117, 23 (2012).

    Google Scholar 

  15. W. Zhou, J. Zhou, and J. Shen, J. Phys. Chem. Solids 73, 245 (2012).

    CAS  Google Scholar 

  16. X. Fan, W.T. Zheng, J.L. Kuo, and D.J. Singh, ACS Appl. Mater. Interfaces 5, 7793 (2013).

    CAS  Google Scholar 

  17. P. Zhang, M. Jia, and Z. Ma, AIP Adv. 8, 075331 (2018).

    Google Scholar 

  18. X. Liu, J. Xie, H. Zhao, P. Lv, K. Wang, Z. Feng, and K. Świerczek, Solid State Ion 269, 86 (2015).

    CAS  Google Scholar 

  19. H. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B 84, 140411 (2011).

    Google Scholar 

  20. A.M. Chockla, K.C. Klavetter, C.B. Mullins, and B.A. Korgel, Chem. Mater. 24, 3738 (2012).

    CAS  Google Scholar 

  21. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).

    CAS  Google Scholar 

  22. C.H.W. Rui Qin, W. Zhu, and Y. Zhang, AIP Adv. 2, 022159 (2012).

    Google Scholar 

  23. H. Sahin and F.M. Peeters, Phys. Rev. B 87, 085423 (2013).

    Google Scholar 

  24. R.E. Roman and S.W. Cranford, Comput. Mater. Sci. 82, 50 (2014).

    CAS  Google Scholar 

  25. M. Ghorbanzadeh Ahangari, A. Salmankhani, A.H. Imani, N. Shahab, and A. Hamed Mashhadzadeh, Silicon 11, 1235 (2018).

    Google Scholar 

  26. X. Sun, Z. Wang, and Y.Q. Fu, Sci. Rep. 5, 18712 (2015).

    CAS  Google Scholar 

  27. X. Wang, X. Shen, Z. Wang, R. Yu, and L. Chen, ACS Nano 8, 11394 (2014).

    CAS  Google Scholar 

  28. L. Wang, Z. Xu, W. Wang, and X. Bai, J. Am. Chem. Soc. 136, 6693 (2014).

    CAS  Google Scholar 

  29. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  30. C. Ataca and S. Ciraci, J. Phys. Chem. C 115, 13303 (2011).

    CAS  Google Scholar 

  31. A.N. Enyashin and G. Seifert, Comput. Theor. Chem. 999, 13 (2012).

    CAS  Google Scholar 

  32. Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Phys. Lett. A 376, 1166 (2012).

    CAS  Google Scholar 

  33. X.L. Lei, M.S. Wu, G. Liu, B. Xu, J. Huang, C. Ouyang, and H.J. Chen, Electrochem. Sci. 8, 2196 (2013).

    Google Scholar 

  34. Q. Peng and S. De, Phys. Chem. Chem. Phys. 15, 19427 (2013).

    CAS  Google Scholar 

  35. P. Rastogi, S. Kumar, S. Bhowmick, A. Agarwal, and Y.S. Chauhan, J. Phys. Chem. C 118, 30309 (2014).

    CAS  Google Scholar 

  36. D. Nasr Esfahani, O. Leenaerts, H. Sahin, B. Partoens, and F.M. Peeters, J. Phys. Chem. C 119, 10602 (2015).

    CAS  Google Scholar 

  37. L. Sun, X. Yan, J. Zheng, H. Yu, Z. Lu, S.P. Gao, L. Liu, X. Pan, D. Wang, Z. Wang, P. Wang, and L. Jiao, Nano Lett. 18, 3435 (2018).

    CAS  Google Scholar 

  38. S.Q. Wang and H.Q. Ye, J. Phys. Condes. Matter 15, 5307 (2003).

    CAS  Google Scholar 

  39. H. Tian, Z.W. Seh, K. Yan, Z. Fu, P. Tang, Y. Lu, R. Zhang, D. Legut, Y. Cui, and Q. Zhang, Adv. Energy Mater. 7, 1602528 (2017).

    Google Scholar 

  40. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    CAS  Google Scholar 

  41. P. Hohenberg and W. Kohn, Phy. Rev. B 136, 864 (1964).

    Google Scholar 

  42. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).

    CAS  Google Scholar 

  43. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    CAS  Google Scholar 

  44. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1998).

    Google Scholar 

  45. C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, and A. Zettl, Science 323, 1705 (2009).

    CAS  Google Scholar 

  46. S. Lebègue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).

    Google Scholar 

  47. A. Apte, A. Krishnamoorthy, J.A. Hachtel, S. Susarla, J.C. Idrobo, A. Nakano, R.K. Kalia, P. Vashishta, C.S. Tiwary, and P.M. Ajayan, Chem. Mater. 30, 7262 (2018).

    CAS  Google Scholar 

  48. S.C.M. Topsakal and S. Ciraci, Appl. Phys. Lett. 96, 091912 (2010).

    Google Scholar 

  49. W. Shi and Z. Wang, J. Phys. Condens. Matter 30, 215301 (2018).

    Google Scholar 

  50. C. Yu, X. Chen, C. Wang, and Z. Wang, J. Phys. Chem. Solids 135, 109081 (2019).

    CAS  Google Scholar 

  51. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Appl. Phys. Lett. 102, 012111 (2013).

    Google Scholar 

  52. D. Çakır, F.M. Peeters, and C. Sevik, Appl. Phys. Lett. 104, 203110 (2014).

    Google Scholar 

  53. A.K.G.K.S. Novoselov and S.V. Morozov, Science 306, 666 (2004).

    CAS  Google Scholar 

  54. K. Rytkönen, J. Akola, and M. Manninen, Phys. Rev. B 75, 075401 (2007).

    Google Scholar 

  55. L. Shi and T. Zhao, J. Mater. Chem. A 5, 3735 (2017).

    CAS  Google Scholar 

  56. A. Molle, C. Grazianetti, L. Tao, D. Taneja, M.H. Alam, and D. Akinwande, Chem. Soc. Rev. 47, 6370 (2018).

    CAS  Google Scholar 

  57. G.A. Tritsaris, E. Kaxiras, S. Meng, and E. Wang, Nano Lett. 13, 2258 (2013).

    CAS  Google Scholar 

  58. X. Sun and Z. Wang, Appl. Surf. Sci. 455, 911 (2018).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (11474047). S.W. was financially supported by the Key Project of Sichuan Education Department (18ZA0420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Wu, S. & Wang, Z. Mechanical Properties of Two-Dimensional Materials (Graphene, Silicene and MoS2 Monolayer) Upon Lithiation. J. Electron. Mater. 49, 5713–5720 (2020). https://doi.org/10.1007/s11664-020-08333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08333-1

Keywords

Navigation