Skip to main content
Log in

Investigation of Optical and Electrical Properties of Different Compositions of As-S-Se Thin Films at Thickness 725 nm With High Precision Using a Wedge-Shaped Optical Model

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Different compositions of as-obtained As40S60-xSex thin films (x = 0 at.%, 20 at.%, 40 at.%, and 60 at.%) with fixed thicknesses were deposited by a thermal evaporation technique. Inheterogeneities of thin-film thickness is a problem that includes significant errors of optical calculations unless there is an optical model that prevents these errors, and the consequent gross errors, in the measurement of optical constants. If not taken into account, this may lead to rather large calculated values for the absorption coefficient or the incorrect presence of the absorption-band tail, as well as to significant errors in the calculated values of the refractive index and film thickness. The optical properties of As40S60-xSex thin films have been determined utilizing measurements of the optical transmission spectra. Owing to the shrinking of the transmission spectra in both the medium and strong absorption regions, we have resorted to applying the optical wedge model for the determination of the film thickness with high precision that equals approximately 725 nm. This paper therefore presents formulae for the transmittance spectrum of a thin dielectric film of selected thickness covering a thick, non-absorbing substrate as well as its upper and lower envelopes. The effect of the content variation on the interference fringes of the transmittance spectrum is analyzed in detail. The electrical properties of the As40S60-xSex thin films have been studied in terms of measuring the temperature-dependent AC conductivity. Both the dielectric constants and dielectric modulus were investigated and are discussed for applications in optoelectronic devices. The change in electrical properties of As40S60-xSex thin films has been interpreted in terms of changed morphological and structural properties. The ratios of the elements were analyzed by comparing them with the actual weight ratios of the bulk material using EDX technology, in addition to the assessment of the Amorphic structure and composition characteristics of the films examined by the x-ray and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Solis, C.N. Afonso, S.C.W. Hyde, N.P. Barry, and P.M.W. French, Phys. Rev. Lett. 76, 2519 (1996).

    Article  CAS  Google Scholar 

  2. J.H. Coombs, A.P.J.M. Jongenelis, W. van Es‐Spiekman, and B. A. J. Jacobs, J. Appl. Phys. 78, 4906 (1995).

  3. A.R. Hilton, J. Non. Cryst. Solids. 2, 28 (1970).

    Article  CAS  Google Scholar 

  4. A. Kribus, O. Zik, and J. Karni, Sol. Energy 68, 405 (2000).

    Article  Google Scholar 

  5. R. Frerichs, JOSA. 43, 1152 (1953).

    Article  Google Scholar 

  6. J.C. Manifacier, J. Gasiot, and J.P. Fillard, J. Phys. E: Sci. Instrum. 9, 1002 (1976).

    Article  CAS  Google Scholar 

  7. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983).

    Article  CAS  Google Scholar 

  8. R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984).

    Article  CAS  Google Scholar 

  9. E.R. Shaaban, J. Alloys Compd. 563, 274 (2013).

    Article  CAS  Google Scholar 

  10. D.D. Štrbac, S.R. Lukić, D.M. Petrović, J.M. Gonzalez-Leal, and A. Srinivasan, J. Non Cryst. Solids. 353, 1466 (2007).

    Article  Google Scholar 

  11. E.R. Shaaban, N. El-Kabnay, A.M. Abou-Sehly, and N. Afify, Physica B 381, 24 (2006).

    Article  CAS  Google Scholar 

  12. J.J. Ruíz-Pérez, J.M. González-Leal, D.A. Minkov, and E. Márquez, J. Phys. 34, 2489 (2001).

    Google Scholar 

  13. E.R. Shaaban, Philos Mag. 88, 781 (2008).

    Article  CAS  Google Scholar 

  14. A. Goel, E.R. Shaaban, M.J. Ribeiro, F.C.L. Melo, and J.M.F. Ferreira, J. Phys.: Condens. Matter 19, 386231 (2007).

    Google Scholar 

  15. J.S. Sanghera, V.Q. Nguyen, and I.D. Aggarwal, J. Am. Ceram. Soc. 79, 1324 (1996).

    Article  CAS  Google Scholar 

  16. E.R. Shaaban, M.A. Kaid, and M.G.S. Ali, J. Alloys Compd. 613, 324 (2014).

    Article  CAS  Google Scholar 

  17. MÁrquez, 5.E., J. Ramirez-Malo, P.Villares, R.Jimenez-Garay, P.J.S. Ewen, and A.E. Owen, J. Phys. 25, 535 (1992).

  18. Z. Cimpl and F. Kosek, Phys. Status Solidi (a) 93, k55 (1986).

    Article  CAS  Google Scholar 

  19. D. Minkor, J. Non Cryst. Solids. 90, 481 (1987).

    Article  Google Scholar 

  20. E.R. Shaaban, Mater. Chem. Phys. 100, 411 (2006).

    Article  CAS  Google Scholar 

  21. E.R. Shaaban, M. Abdel-Rahman, and M.T. Dessouky, Thin Solid Films 515, 3810 (2007).

    Article  CAS  Google Scholar 

  22. E.R. Shaaban, I.S. Yahia, N. Afify, G.F. Salem, and W. Dobrowolski, Mater. Sci. Semicond. Process. 19, 107 (2014).

    Article  CAS  Google Scholar 

  23. T. Cardinal, K.A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J.F. Viens, and A. Villeneuve, J. Non. Cryst. Solids. 256, 353 (1999).

    Article  Google Scholar 

  24. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, and G.A.M. Ali, Optik 186, 275 (2019).

    Article  CAS  Google Scholar 

  25. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, G.A.M. Ali, and E.S. Yousef, Acta Phys. Pol. 136, 498 (2019).

    Article  CAS  Google Scholar 

  26. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, and A. Qasem, Appl. Phys. A 126, 34 (2020).

    Article  CAS  Google Scholar 

  27. J.M. Gonzalez-Leal, R. Prieto-Alcon, M. Stuchlik, M. Vlcek, S.R. Elliott, and E. Marquez, Opt. Mater. 27, 147 (2004).

    Article  CAS  Google Scholar 

  28. N. Deraz, O.H. Abd-Elkader, and M. Yassin, Crystals 10, 489 (2020).

    Article  CAS  Google Scholar 

  29. R.V. Barde, K.R. Nemade, and S.A. Waghuley, J. Asian Ceram. Soc. 3, 116 (2015).

    Article  Google Scholar 

  30. M.H. Saleh, N.M. Ershaidat, M.J.A. Ahmad, B.N. Bulos, and M. M.A.G. Jafar, Opt. Rev. 24, 260 (2017).

  31. U. Pal, S. Saha, A.K. Chaudhuri, V.V. Rao, and H.D. Banerjee, J. Phys. 22, 965 (1989).

    CAS  Google Scholar 

  32. A. Chełkowski, Dielectric physics, Vol. 9 (Amsterdam: Elsevier, 1980).

    Google Scholar 

  33. I. Bunget, and P. Mihai, Mater. Sci. Monogr. 19, 443 (1984).

  34. E.H. Nicollian, H.H. Matlkice, and R. John, Brews. IEEE Trans. Electron Devices 20, 380 (1973).

    Article  CAS  Google Scholar 

  35. A. Eroğlu, A. Tataroğlu, and Ş. Altındal, Microelectron. Eng. 91, 154 (2012).

    Article  Google Scholar 

  36. M.M.A. Kader, M.Y. Elzayat, T.R. Hammad, A.I. Aboud, and H. Abdelmonem, Phys. Scr. 83, 035705 (2011).

    Article  Google Scholar 

  37. A. Tataroğlu, Gazi Univ. J. Sci. 26, 501 (2013).

  38. P.A. Loiko, E.V. Vilejshikova, N.M. Khaidukov, M.N. Brekhovskikh, X. Mateos, M. Aguiló, and K.V. Yumashev, J. Lumin. 180, 103 (2016).

    Article  CAS  Google Scholar 

  39. N.A. Hegab, M.A. Afifi, H.E. Atyia, and A.S. Farid, J. Alloys Compd. 477, 925 (2009).

    Article  CAS  Google Scholar 

  40. F. Yakuphanoglu, Physica B 393, 139 (2007).

    Article  CAS  Google Scholar 

  41. T.Z. Rizvi and A. Shakoor, J. Phys. D. 42, 095415 (2009).

    Article  Google Scholar 

  42. M. Ram and S. Chakrabarti, J. Alloys Compd. 462, 214 (2008).

    Article  CAS  Google Scholar 

  43. R. Ertuğrul and A. Tataroğlu, Chin. Phys. Lett. 29, 077304 (2012).

    Article  Google Scholar 

  44. M.G. Moustafa and M.Y. Hassaan, J. Alloys Compd. 710, 312 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extended their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this research project, Number: (R.G.P2./62/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Qasem.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasem, A., Shaaban, E.R., Hassaan, M.Y. et al. Investigation of Optical and Electrical Properties of Different Compositions of As-S-Se Thin Films at Thickness 725 nm With High Precision Using a Wedge-Shaped Optical Model. J. Electron. Mater. 49, 5750–5761 (2020). https://doi.org/10.1007/s11664-020-08347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08347-9

Keywords

Navigation