Skip to main content
Log in

Experimental Constraints on Formation of Low-Cr# Chromitite: Effect of Variable H2O and Cr2O3 on Boninitic-Magma and Harzburgite Reactions

  • Mineralogy • Petrology • Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Reactions between a boninitic or basaltic magma and harzburgite at shallow mantle depths are thought to be closely related to the formation of podiform chromitites, but little experimental data is available on these reactions. In this study, a series of experiments were conducted at 1.5 GPa and 1 000–1 400 °C to investigate the interactions between boninitic magma and harzburgite in homogenous mixed systems with varied bulk concentrations of water (∼0.7 wt.%–10 wt.%) and Cr2O3 (∼0.2 wt.%–4 wt.%). In the experimental charges, chromite grains can be observed coexisting with orthopyroxene, clinopyroxene±olivine, and quenched melt in the Cr-bearing systems. The bulk concentration of Cr2O3 in the starting material has a slight effect on compositional changes in the chromites generated. However, the Cr# (Cr#=100×Cr/(Cr+Al)) and Mg# (Mg#=100×Mg/(Mg+Fe)) values for the chromites exhibit positive and negative correlations, respectively, with the bulk H2O concentrations. At 1 100 °C, chromite Cr# values range from ∼33–35 to ∼58–65, and chromite Mg# values range from ∼70–73 to ∼55–58 when bulk H2O contents in the starting material are increased from ∼0.7 wt.% to ∼10 wt.%. The experimentally produced chromites have compositions (as expressed by Cr#, Mg#, and NiO and MnO contents) similar to natural chromites from low-Cr# chromitite bodies. We suggest that the interactions between boninitic magmas with varied H2O contents and harzburgite in a shallow mantle wedge could be a possible mechanism that forms the low-Cr# chromitites found in ophiolites. We emphasize here that H2O may play an important role in the compositional evolutions of natural chromitites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ahmed, A., Arai, S., 2002. Unexpectedly High-PGE Chromitite from the Deeper Mantle Section of the Northern Oman Ophiolite and Its Tectonic Implications. Contributions to Mineralogy and Petrology, 143(3): 263–278. https://doi.org/10.1007/s00410-002-0347-8

    Google Scholar 

  • Arai, S., 1997. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 15(2/3): 303–310. https://doi.org/10.1016/S0743-9547(97)00015-9

    Google Scholar 

  • Arai, S., Matsukage, K., 1998. Petrology of a Chromitite Micropod from Hess Deep, Equatorial Pacific: A Comparison between Abyssal and Alpine-Type Podiform Chromitites. Lithos, 43(1): 1–14. https://doi.org/10.1016/s0024-4937(98)00003-6

    Google Scholar 

  • Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264: 277–295. https://doi.org/10.1016/j.lithos.2016.08.039

    Google Scholar 

  • Arai, S., Yurimoto, H., 1994. Podiform Chromitites of the Tari-Misaka Ultramafic Complex, Southwestern Japan, as Mantle-Melt Interaction Products. Economic Geology, 89(6): 1279–1288. https://doi.org/10.2113/gsecongeo.89.6.1279

    Google Scholar 

  • Bonavia, F. F., Diella, V., Ferrario, A., 1993. Precambrian Podiform Chromitites from Kenticha Hill, Southern Ethiopia. Economic Geology, 88(1): 198–202. https://doi.org/10.2113/gsecongeo.88.L198

    Google Scholar 

  • Dickey, J. S., 1975. A Hypothesis of Origin for Podiform Chromite Deposits. Geochimica et Cosmochimica Acta, 39(6): 1061–1074. https://doi.org/10.1016/0016-7037(75)90047-2

    Google Scholar 

  • Edwards, S. J., Pearce, J. A., Freeman, J., 2000. New Insights Concerning the Influence of Water during the Formation of Podiform Chromitite. Special Papers-Geololgical Society of America, 139–148

  • Gaetani, G. A., Grove, T. L., Bryan, W. B., 1994. Experimental Phase Relations of Basaltic Andesite from Hole 839B under Hydrous and Anhydrous Conditions. In Proceedings of the Ocean Drilling Program, Scientific Results, 135: 557–563

    Google Scholar 

  • Gervilla, F., Proenza, J. A., Frei, R., et al., 2005. Distribution of Platinum-Group Elements and Os Isotopes in Chromite Ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology, 150(6): 589–607. https://doi.org/10.1007/s00410-005-0039-2

    Google Scholar 

  • González-Jiménez, J. M., Proenza, J. A., Gervilla, F., et al., 2011. High-Cr and High-Al Chromitites from the Sagua de Tánamo District, Mayarí-Cristal Ophiolitic Massif (Eastern Cuba): Constraints on Their Origin from Mineralogy and Geochemistry of Chromian Spinel and Platinum-Group Elements. Lithos, 125(1/2): 101–121. https://doi.org/10.1016/j.lithos.2011.01.016

    Google Scholar 

  • Graham, I. T., Franklin, B. J., Marshall, B., 1996. Chemistry and Mineralogy of Podiform Chromitite Deposits, Southern NSW, Australia: A Guide to Their Origin and Evolution. Mineralogy and Petrology, 57(3/4): 129–150. https://doi.org/10.1007/bf01162355

    Google Scholar 

  • Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4): 655–684. https://doi.org/10.1093/petrology/egw011

    Google Scholar 

  • Hock, M., Friedrich, G., Plüger, W. L., et al., 1986. Refractory- and Metallurgical-Type Chromite Ores, Zambales Ophiolite, Luzon, Philippines. Mineralium Deposita, 21(3): 190–199. https://doi.org/10.1007/bf00199799

    Google Scholar 

  • Johan, Z., Martin, R. F., Ettler, V., 2017. Fluids are Bound to be Involved in the Formation of Ophiolitic Chromite Deposits. European Journal of Mineralogy, 29(4): 543–555. https://doi.org/10.1127/ejm/2017/0029-2648

    Google Scholar 

  • Leblanc, M., 1997. Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia: Reply. Economic Geology, 92(4): 503–504. https://doi.org/10.2113/gsecongeo.92.4.503

    Google Scholar 

  • Leblanc, M., Violette, J. F., 1983. Distribution of Aluminum-Rich and Chromium-Rich Chromite Pods in Ophiolite Peridotites. Economic Geology, 78(2): 293–301. https://doi.org/10.2113/gsecongeo.78.2.293

    Google Scholar 

  • Matveev, S., Ballhaus, C., 2002. Role of Water in the Origin of Podiform Chromitite Deposits. Earth and Planetary Science Letters, 203(1): 235–243. https://doi.org/10.1016/s0012-821x(02)00860-9

    Google Scholar 

  • Melcher, F., Grum, W., Simon, G., et al., 1997. Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: A Study of Solid and Fluid Inclusions in Chromite. Journal of Petrology, 38(10): 1419–1458. https://doi.org/10.1093/petroj/38.10.1419

    Google Scholar 

  • Moghadam, H. S., Zaki Khedr, M., Arai, S., et al., 2015. Arc-Related Harzburgite-Dunite-Chromitite Complexes in the Mantle Section of the Sabzevar Ophiolite, Iran: A Model for Formation of Podiform Chromitites. Gondwana Research, 27(2): 575–593. https://doi.org/10.1016/j.gr.2013.09.007

    Google Scholar 

  • Morishita, T., Dilek, Y., Shallo, M., et al., 2011. Insight into the Uppermost Mantle Section of a Maturing Arc: The Eastern Mirdita Ophiolite, Albania. Lithos, 124(3/4): 215–226. https://doi.org/10.1016/j.lithos.2010.10.003

    Google Scholar 

  • Nicolas, A., Al-Azri, H., 1991. Chromite-Rich and Chromite-Poor Ophiolites: The Oman Case. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Springer, Dordrecht. 261–274. https://doi.org/10.1007/978-94-011-3358-6_14

  • Payot, B. D., Arai, S., Tamayo, R. A. Jr, et al., 2013. Textural Evidence for the Chromite-Oversaturated Character of the Melt Involved in Podiform Chromitite Formation. Resource Geology, 63(3): 313–319. https://doi.org/10.1111/rge.12011

    Google Scholar 

  • Proenza, J. A., Zaccarini, F., Escayola, M., et al., 2008. Composition and Textures of Chromite and Platinum-Group Minerals in Chromitites of the Western Ophiolitic Belt from Pampean Ranges of Córdoba, Argentina. Ore Geology Reviews, 33(1): 32–48. https://doi.org/10.1016/j.oregeorev.2006.05.009

    Google Scholar 

  • Proenza, J., Gervilla, F., Melgarejo, J., et al., 1999. Al- and Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba); Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle. Economic Geology, 94(4): 547–566. https://doi.org/10.2113/gsecongeo.94.4.547

    Google Scholar 

  • Robinson, P., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27: 486–506. https://doi.org/10.1016/j.gr.2014.06.003

    Google Scholar 

  • Rollinson, H., 2008. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite: Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 156(3): 273–288. https://doi.org/10.1007/s00410-008-0284-2

    Google Scholar 

  • Rollinson, H., Adetunji, J., 2013. Mantle Podiform Chromitites do not Form beneath Mid-Ocean Ridges: A Case Study from the Moho Transition Zone of the Oman Ophiolite. Lithos, 177: 314–327. https://doi.org/10.1016/j.lithos.2013.07.004

    Google Scholar 

  • Rui, H. C., Jiao, J. G., Xia, M. Z., et al., 2019. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence. Journal of Earth Science, 30(3): 476–493. https://doi.org/10.1007/s12583-019-1227-8

    Google Scholar 

  • Schiano, P., Clocchiatti, R., Lorand, J. P., et al., 1997. Primitive Basaltic Melts Included in Podiform Chromites from the Oman Ophiolite. Earth and Planetary Science Letters, 146(3/4): 489–497. https://doi.org/10.1016/s0012-821x(96)00254-3

    Google Scholar 

  • Shi, R. D., Alard, O., Zhi, X. C., et al., 2007. Multiple Events in the Neo-Tethyan Oceanic Upper Mantle: Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet. Earth and Planetary Science Letters, 261(1/2): 33–48. https://doi.org/10.1016/j.epsl.2007.05.044

    Google Scholar 

  • Shi, R. D., Griffin, W. L., O’Reilly, S. Y., et al., 2012. Melt/mantle Mixing Produces Podiform Chromite Deposits in Ophiolites: Implications of Re-Os Systematics in the Dongqiao Neo-Tethyan Ophiolite, Northern Tibet. Gondwana Research, 21(1): 194–206. https://doi.org/10.1016/j.gr.2011.05.011

    Google Scholar 

  • Thayer, T. P., 1964. Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8): 1497–1524. https://doi.org/10.2113/gsecongeo.59.8.1497

    Google Scholar 

  • Uysal, İ., Tarkian, M., Sadiklar, M. B., et al., 2009. Petrology of Al- and Cr-Rich Ophiolitic Chromitites from the Mugla, SW Turkey: Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry. Contributions to Mineralogy and Petrology, 158(5): 659–674. https://doi.org/10.1007/s00410-009-0402-9

    Google Scholar 

  • Wang, C., Jin, Z. M., Gao, S., et al., 2010. Eclogite-Melt/Peridotite Reaction: Experimental Constrains on the Destruction Mechanism of the North China Craton. Science China Earth Sciences, 53(6): 797–809. https://doi.org/10.1007/s11430-010-3084-2

    Google Scholar 

  • Xiong, F. H., Yang, J. S., Dilek, Y., et al., 2018. Origin and Significance of Diamonds and other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere, 10(1): 142–155. https://doi.org/10.1130/l607.1

    Google Scholar 

  • Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2015. Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet. Gondwana Research, 27(2): 525–542. https://doi.org/10.1016/j.gr.2014.04.008

    Google Scholar 

  • Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2017a. High-Al and High-Cr Podiform Chromitites from the Western Yarlung-Zangbo Suture Zone, Tibet: Implications from Mineralogy and Geochemistry of Chromian Spinel, and Platinum-Group Elements. Ore Geology Reviews, 80: 1020–1041. https://doi.org/10.1016/j.oregeorev.2016.09.009

    Google Scholar 

  • Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2017b. Petrology and Geochemistry of Peridotites and Podiform Chromitite in the Xigaze Ophiolite, Tibet: Implications for a Suprasubduction Zone Origin. Journal of Asian Earth Sciences, 146: 56–75. https://doi.org/10.1016/j.jseaes.2017.05.001

    Google Scholar 

  • Xiong, Q., Henry, H., Griffin, W. L., et al., 2017. High- and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite: Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6): 45. https://doi.org/10.1007/s00410-017-1364-y

    Google Scholar 

  • Zaccarini, F., Garuti, G., Proenza, J. A., et al., 2011. Chromite and Platinum Group Elements Mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): Geodynamic Implications. Geologica Acta: An International Earth Science Journal, 9(3/4): 407–423

    Google Scholar 

  • Zhou, M. F., Robinson, P. T., 1997. Origin and Tectonic Environment of Podiform Chromite Deposits. Economic Geology, 92(2): 259–262. https://doi.org/10.2113/gsecongeo.92.2.259

    Google Scholar 

  • Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3–21. https://doi.org/10.1093/petrology/37.1.3

    Google Scholar 

  • Zhou, M. F., Robinson, P. T., Su, B. X., et al., 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1): 262–283. https://doi.org/10.1016/j.gr.2013.12.011

    Google Scholar 

  • Zhou, M. F., Sun, M., Keays, R. R., et al., 1998. Controls on Platinum-Group Elemental Distributions of Podiform Chromitites: A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochimica et Cosmochimica Acta, 62(4): 677–688. https://doi.org/10.1016/s0016-7037(97)00382-7

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Programme on Global Change and Air-Sea Interaction (No. GASI-GEOGE-02), the National Nature Science Foundation of China (Nos. 41772040, 91858104) and the Fundamental Research Funds for the Central Universities, Hohai University (No. 2013/B18020030). We thank Zhong Gao and Biji Luo for providing the natural boninite sample (QL-Bon), and Jihao Zhu and Jianggu Lu for technical support during EPMA analysis. We acknowledge the use of EPMA in the Key Laboratory of Submarine Geosciences, State Oceanic Administration. We thank Junlong Yang, Xiangfa Wang and Xingdong Zhou for technical support during high-pressure experiments. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1291-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, Y., Wang, C. et al. Experimental Constraints on Formation of Low-Cr# Chromitite: Effect of Variable H2O and Cr2O3 on Boninitic-Magma and Harzburgite Reactions. J. Earth Sci. 31, 709–722 (2020). https://doi.org/10.1007/s12583-020-1291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1291-0

Key words

Navigation