Skip to main content
Log in

Planktonic Community of a Large Eutrophic Reservoir during a Period of Anomalously High Water Temperature

  • STRUCTURE AND FUNCTIONING OF AQUATIC ECOSYSTEMS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The rise in temperature to anomalously high values for the Middle Volga (27–29°С) in the Cheboksary Reservoir in the summer of 2010 significantly increased (2–14 times) the biomass of some plankton components (phytoplankton, bacterioplankton, protozoans, and zooplankton) and the community as a whole. The total plankton biomass reached a record value of 3 g C/m3 for deep parts in the Upper and Middle Volga. The cyanobacterial bloom of water was observed in most of the reservoir. Differences in the structure of the plankton community and the bacterioplankton-to-phytoplankton production ratio were found between riverine and lacustrine parts of the reservoir. Autotrophic (in the riverine part) and heterotrophic (in the lower lacustrine part) stages of the plankton community development were observed simultaneously in different parts of the reservoir. The functioning of the plankton community in a water temperature that exceeded usual summer heating by almost 9°C led to the deterioration of water quality in the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Adrian, R., O’Reilly, C.M., Zagarese, H., et al., Lakes as sentinels of climate change, Limnol., Oceanogr., 2009, vol. 54, no. 6, p. 2283.

  2. Briand, J.-F., Jacquet, S., Bernard, C., and Humbert, J.-F., Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems, Vet. Res., 2003, vol. 34, p. 361.

    Article  CAS  Google Scholar 

  3. Brookes, J.D. and Carey, C.C., Resilience to blooms, Science, 2011, vol. 334, no. 6052, p. 46.

    Article  CAS  Google Scholar 

  4. Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy and comparison with other procedures, Appl. Environ. Microbiol., 1983, vol. 46, no. 2, p. 491.

    Article  CAS  Google Scholar 

  5. Chorus, I. and Bartram, J., Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, London: E and FN Spon, 1999.

    Book  Google Scholar 

  6. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2010 g. (Report on the Climate Features on the Territory of the Russian Federation for 2010), Moscow: Rosgidromet, 2011.

  7. Edel’shtein, K.K., Vodokhranilishcha Rossii: ekologicheskie problemy, puti ikh resheniya (Reservoirs of Russia: Environmental Problems and Ways to Solve Them), Moscow: GEOS, 1998.

  8. Gonzalez, J.M. and Suttle, C.A., Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion, Mar. Ecol.: Progr. Ser., 1993, vol. 94, p. 1.

    Article  Google Scholar 

  9. Honjo, M., Matzui, K., Ueki, M., et al., Diversity of virus-like agents killing Microcystis aeruginosa in a hyper-eutrophic pond, J. Plankton Res., 2006, vol. 28, no. 4, p. 407.

    Article  Google Scholar 

  10. Jeffrey, S.W. and Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanz, 1975, vol. 167, p. 191.

    Article  CAS  Google Scholar 

  11. Kopylov, A.I. and Kosolapov, D.B., Mikrobnaya “petlya” v planktonnykh soobshchestvakh morskikh i presnovodnykh ekosistemakh (Microbial “Loop” in Plankton Communities of Marine and Freshwater Ecosystems), Izhevsk: KnigoGrad, 2011.

  12. Kopylov, A.I., Lazareva, V.I., Mineeva, N.M., et al., Influence of anomalous high water temperatures on the development of the plankton community in the Middle Volga reservoirs in summer 2010, Dokl. Biol. Sci., 2012, vol. 442, no. 1, p. 11.

    Article  CAS  Google Scholar 

  13. Kopylov, A.I., Stroinov, Ya.V., Zabotkina, E.A., et al., Heterotrophic organisms and viruses in the Oka River and Cheboksary Reservoir during the abnormally hot summer of 2010, Biol. Bull. (Moscow), 2013, vol. 40, no. 3, p. 337.

    Article  Google Scholar 

  14. Korneva, L.G., Solov’eva, V.V., Russkikh, Ya.V., and Chernova, E.N., The state of phytoplankton and the content of cyanotoxins in the Rybinsk, Gorky, and Cheboksary reservoirs during the abnormally hot summer of 2010, Materialy Vserossiiskoi konferentsii “Bassein Volgi v XXI veke: struktura i funktsionirovanie ekosistem vodokhranilishch,” Borok, 22–26 oktyabrya, 2012 (Proc. All-Russ. Conf. “Volga River Basin in the 21st Century: Structure and Functioning of Reservoir Ecosystems,” Borok, October 22–26, 2012), Izhevsk: Izdatel’ Permyakov, 2012, p. 138.

  15. Landry, M.R. and Hassett, R.P., Estimating the grazing impact of marine microzooplankton, Mar. Biol. (Berlin), 1982, vol. 67, p. 283.

    Article  Google Scholar 

  16. Lazareva, V.I., Struktura i dinamika zooplanktona Rybinskogo vodokhranilishcha (The Structure and Dynamics of Zooplankton of the Rybinsk Reservoir), Moscow: KMK, 2010.

  17. Lazareva, V.I., Mineeva, N.M., and Zhdanova, S.M., The spatial distribution of plankton in the Upper and Middle Volga reservoirs in years with different thermal conditions, Povolzh. Ekol. Zh., 2012, no. 4, p. 394.

  18. Mineeva, N.A., Litvinov, A.S., Stepanova, I.S., and Kochetkova, Yu.M., Chlorophyll content and factors affecting its spatial distribution in the Middle Volga reservoirs, Inland Water Biol., 2008, vol. 1, no. 1, p. 64. https://doi.org/10.1007/s12212-008-1010-5

    Article  Google Scholar 

  19. Mooij, W.M., Hulsmann, S., De Senerpont, L.N., et al., The impact of climate change on lakes in the Netherlands: a review, Aquat. Ecol., 2005, vol. 39, p. 381.

    Article  CAS  Google Scholar 

  20. O’Neil, J.M., Davis, T.W., Burford, M.A., and Gobler, C.J., The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change, Harmful Algae, 2012, vol. 14, p. 313.

    Article  Google Scholar 

  21. Noble, R.T. and Fuhrman, J.A., Use of SYBR green for rapid epifluorescence count of marine viruses and bacteria, Aquat. Microb. Ecol., 1998, vol. 14, p. 113.

    Article  Google Scholar 

  22. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton: Lewis, 1993, p. 303.

    Google Scholar 

  23. Oksiyuk, O.P., Zhukinskii, V.N., Braginskii, L.P., et al., Integrated environmental classification of land surface water quality, Gidrobiol. Zh., 1993, vol. 29, no. 4, p. 62.

    Google Scholar 

  24. Paerll, H.W. and Huisman, J., Climate change: a catalyst for global expansion of harmful cyanobacterial blooms, Environ. Microbiol. Rep., 2009, vol. 1, p. 27.

    Article  Google Scholar 

  25. Papchenkov, V.G., Dynamics of overgrowing of Volga reservoirs, Materialy Vserossiiskoi konferentsii “Bassein Volgi v XXI veke: struktura i funktsionirovanie ekosistem vodokhranilishch,” Borok, 22–26 oktyabrya, 2012 (Proc. All-Russ. Conf. “Volga River Basin in the 21st Century: Structure and Functioning of Reservoir Ecosystems,” Borok, October 22–26, 2012), Izhevsk: Izdatel’ Permyakov, 2012, p. 214.

  26. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol., Oceanogr., 1980, vol. 25, no. 5, p. 943.

    Article  Google Scholar 

  27. Reynolds, C.S., The Ecology of Phytoplankton, Cambridge: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  28. Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vodoemov (Ecology of Microorganisms in Fresh Water Bodies), Leningrad: Nauka, 1974.

  29. Schindler, D.W., Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes, Limnol., Oceanogr., 2009, vol. 54, no. 6, pt. 2, p. 2349.

  30. Sipkay, Cs., Kiss, K.T., Vadadi-Fulop, Cs., and Hufnagel, L., Trends in research on the possible effects of climate change concerning aquatic ecosystems with special emphasis on the modeling approach, Appl. Ecol. Environ. Res., 2009, vol. 7, no. 2, p. 171.

    Article  Google Scholar 

  31. Tijdens, M., Van de Waal, D.B., Slovakova, H., et al., Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in shallow eutrophic lake, Freshwater Biol., 2008, vol. 53, p. 1126.

    Article  Google Scholar 

  32. The Impact of Climate Change on European Lakes, Aquatic Ecology Series, Dordrecht: Springer-Verlag, 2010, vol. 4.

  33. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume (The Second Assessment Report of Roshydromet on Climate Change and Its Consequences on the Territory of the Russian Federation. General Summary), Moscow: Rosgidromet, 2014.

  34. Zakonnova, A.V. and Litvinov, A.S., Long-term changes in the hydroclimatic regime of the Rybinsk Reservoir, in Gidrologo-gidrokhimicheskie issledovaniya vodoemov basseina Volgi (Hydrological and Hydrochemical Studies of the Volga Basin), Yaroslavl: Filigran’, 2016, p. 16.

Download references

Funding

This study was conducted as part of State Tasks nos. АААА-А18-118012690096-1, АААА-А18-118012690098-5, and АААА-А18-118012690106-7 and with partial support from the “Biological Resources” program of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kopylov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Ruban

Abbreviations: Chl, chlorophyll а; Вb, biomass of bacterioplankton; Вhnf, biomass of heterotrophic nanoflagellates; Вhov, total biomass of heterotrophic organisms and viruses; Вmc, biomass of microbial community; Вph, biomass of phytoplankton; Btotal, total biomass of plankton; Вv, biomass of viruses; Вznp, biomass of non-predatory zooplankton; Вzoo, biomass of zooplankton; Рph, primary production of phytoplankton; ∑Pph, integrated primary production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, A.I., Lazareva, V.I., Mineeva, N.M. et al. Planktonic Community of a Large Eutrophic Reservoir during a Period of Anomalously High Water Temperature. Inland Water Biol 13, 339–348 (2020). https://doi.org/10.1134/S1995082920030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920030086

Keywords:

Navigation