Skip to main content
Log in

Characterisation of Aceria massalongoi and a histopathological study of the leaf galls induced on chaste trees

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The eriophyoid mite Aceria massalongoi (Canestrini) was collected from globoid leaf galls on severely injured chaste trees, Vitex agnus-castus L. (Lamiaceae), in Bari and Bernalda (southern Italy), and on the Ionian island Leukade (Greece). Female, male and nymph were described in detail, following the current morphometric descriptive scheme, supplementing older and incomplete descriptions. Molecular characterization of A. massalongoi from Italy and Greece was conducted by amplifying and sequencing the ribosomal ITS, the D2–D3 expansion domains of the 28S rRNA gene and the mitochondrial COI, for the first time. Phylogenetic trees based on the three molecular markers showed congruent results, confirming that Italian and Greek A. massalongoi populations are the same species that cluster together with some intraspecific variability. Galls, ranging from 0.5 to 2.8 mm in diameter, were randomly distributed on both leaf surfaces, and protruded ca. 1 mm from the leaf surface. Sometimes they were closely aggregated on midrib and leaves, which, consequently, appeared strongly deformed. Close-up observations revealed that gall induction causes hyperplastic proliferation of leaf tissues around the gall chamber hosting mites. The uniserial cell lining inside this chamber provides the nutritional tissue for the mites. All feeding cells contained one or more (frequently 2–3) hypertrophied nuclei and dense granular cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abolafia J, Liébanas G, Peña-Santiago R (2001) Nematodes of the order Rhabditida from Andalucia Oriental Spain. The subgenus Pseudacrobeles Steiner, 1938, with description of a new species. J Nematode Morphol Syst 4:137–154

    Google Scholar 

  • Adrover E, Berger MA, Pérez AA, Tarazi FI, Antonelli MC (2007) Effects of prenatal stress on dopamine D2 receptor asymmetry in rat brain. Synapse 61:459–462

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amrine JW Jr, Manson DCM (1996) Preparation, mounting and descriptive study of Eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites–their biology, natural enemies and control. World Crop Pests. Elsevier Science Publishing, Amsterdam, vol 6, pp 383–396. https://doi.org/10.1016/S1572-4379(96)80023-6

  • Amrine JW Jr, Stasny TAH, Flechtmann CHW (2003) Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Indira Publishing House, West Bloomfield, p 244

    Google Scholar 

  • Anderson DL, Morgan MJ (2007) Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species. Exp App Acarol 43:1–24. https://doi.org/10.1007/s10493-007-9103-0

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. https://doi.org/10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  • Canestrini G (1890) Ricerche intorno ai Fitoptidi. Atti Soc Veneto-Trentina Sci Nat Padova 12(1):1–26, plates 6–7

    Google Scholar 

  • Canestrini G (1891) Ricerche intorno ai fitoptidi. Atti Soc Veneto-Trentina Sci Nat Padova 12(1):40–63

    Google Scholar 

  • Canestrini G (1892) Prospetto dell’Acarofauna Italiana. Parte V. Famiglia dei Phytoptini (Phytoptidae). Atti Soc Veneto-Trentina Sci Nat Padova ser II 1:543–557 ((589–722, plates 44–59))

    Google Scholar 

  • Castillo P, Vovlas N, Subbotin S, Troccoli A (2003) A new root-knot nematode, Meloidogyne baetica n. sp. (Nematoda: Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology 93:1093–1102. https://doi.org/10.1094/phyto.2003.93.9.1093

    Article  PubMed  Google Scholar 

  • Cvrkovic T, Chetverikov P, Vidovic B, Petanovic R (2016) Cryptic speciation within Phytoptus avellanae s.l. (Eriophyoidea: Phytoptidae) revealed by molecular data and observations on molting Tegonotus-like nymphs. Exp Appl Acarol 68:83–96. https://doi.org/10.1007/s10493-015-9981-5

    Article  PubMed  Google Scholar 

  • Dçbski B (1918) Cécidies signalées en Ègypte jusqu’a ce jour. Mém Soc Entomol Ègypte 1(4):1–37

    Google Scholar 

  • de Lillo E, Skoracka A (2010) What’s “cool” on eriophyoid mites? Exp Appl Acarol 51(1–3):3–30. https://doi.org/10.1007/s10493-009-9297-4

    Article  PubMed  Google Scholar 

  • de Lillo E, Craemer C, Amrine JW Jr, Nuzzaci G (2010) Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp Appl Acarol 51(1–3):283–307. https://doi.org/10.1007/s10493-009-9311-x

    Article  PubMed  Google Scholar 

  • de Lillo E, Pozzebon AL, Valenzano D, Duso C (2018) An intimate relationship between eriophyoid mites and their host plants—a review. Front Pl Sci 9(1786):1–14. https://doi.org/10.3389/fpls.2018.01786

    Article  Google Scholar 

  • De Luca F, Fanelli E, Di Vito M, Reyes A, De Giorgi C (2004) Comparison of the sequences of the D3 expansion of the 26S ribosomal genes reveals different degrees of heterogeneity in different populations and species of Pratylenchus from the Mediterranean region. Eur J Plant Pathol 111:949–957. https://doi.org/10.1007/s10658-004-0813-4

    Article  Google Scholar 

  • Denizhan E, Monfreda R, de Lillo E, Çobanoğlu S (2015) Eriophyoid mite fauna (Acari: Trombidiformes: Eriophyoidea) of Turkey: new species, new distribution reports and an updated catalogue. Zootaxa 3991:1–63. https://doi.org/10.11646/zootaxa.3991.1.1

    Article  PubMed  Google Scholar 

  • Doğan Y, Süleyman B, Hasan HM, Güngӧr A (2003) Plants used as natural dye sources in Turkey. Econ Bot 57(4):442–453

    Article  Google Scholar 

  • Farkas HK (1965) Familie Eriophyidae, Gallmilben. Die Tierwelt Mitteleuropas 3(3):1–155

    Google Scholar 

  • Hebert PDN, Ratnasingham S, de Ward JR (2003) Barcoding animal life: cytochrome c oxidase subunit I divergence among closely related species. Proc R Soc B 270:S96–S99. https://doi.org/10.1098/rsbl.2003.0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirobe C, Qiao ZS, Takeya K, Itokawa H (1997) Cytotoxic flavonoids from Vitex agnus-castus. Phytochem 46(3):521–524

    Article  CAS  Google Scholar 

  • Jočić I, Petanović R (2012) Checklist of the eriophyoid mite fauna of Montenegro (Acari: Prostigmata: Eriophyoidea). Acta Entomol Serb 17(1/2):141–166

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw Hill, New York, p 523

    Google Scholar 

  • Jones WHS (1966) Pliny natural history with an english translation in ten volumes. Cambridge

    Google Scholar 

  • Joyce SA, Reid A, Driver F, Curran J (1994) Application of polymerase chain reaction (PCR) methods to the identification of entomopathogenic nematodes. In: Burnell AM, Ehlers RU, Masson JP (Eds). Cost 812 Biotechnology: genetics of entomopathogenic nematodes-bacterium complexes. In: Proceedings of symposium and workshop, St Patrick’s College, Maynooth, County Kildare, Ireland. Luxembourg, European Commission, DGXII, pp 178–187

  • Kanzaki N, Futai K (2002) A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within xylophilus group. Nematology 4:35–41

    Article  CAS  Google Scholar 

  • Khaing TM, Shim JK, Lee KY (2014) Molecular identification and phylogenetic analysis of economically important acaroid mites (Acari: Astigmata: Acaroidea) in Korea. Entomol Res 44:331–337. https://doi.org/10.1111/1748-5967.12085

    Article  CAS  Google Scholar 

  • Keifer HH (1975) Eriophyoidea Nalepa. In: Jeppson LR, Keifer HH, Baker EW (eds) Mites injurious to economic plants. University of California Press, Berkeley, pp 327–533

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski M, Skoracka A, Szydło W, Kozak M, Druciarek T, Griffiths D (2014) Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization. Exp Appl Acarol 63:497–520. https://doi.org/10.1007/s10493-014-9805-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Li HS, Hoffmann AA, Guo JF, Zuo Y, Xue XF, Pang H, Hong XY (2016) Identification of two lineages of host eriophyoid mites predisposed to different levels of host diversification. Mol Phylogen Evol 105:235–240

    Article  Google Scholar 

  • Lindquist EE (1996) External anatomy and notation of structures. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. World Crop Pests, vol 6. Elsevier Science Publishing, Amsterdam, pp 3–31. https://doi.org/10.1016/S1572-4379(96)80003-0

    Chapter  Google Scholar 

  • Liu Q, Yun Y-M, Lai Y, Wang G-Q, Xue X-F (2019) Unravelling the phylogeny, cryptic diversity and morphological evolution of Diptilomiopus mites (Acari: Eriophyoidea). Exp Appl Acarol 79:323–344

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus-castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95(5):363–365. https://doi.org/10.1007/s00436-004-1297-z

    Article  PubMed  Google Scholar 

  • NalepaA (1925) Beiträge zur Kenntnis der Weiden–Gallmilben. Marcellia 21(1–6):31–58

    Google Scholar 

  • Navajas M, Navia D (2010) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Exp Appl Acarol 51(1–3):257–271. https://doi.org/10.1007/s10493-009-9301-z

    Article  CAS  PubMed  Google Scholar 

  • Palomares-Rius JE, Escobar C, Cabrera J, Vovlas A, Castillo P (2017) Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front Plant Sci 8:1987. https://doi.org/10.3389/fpls.2017.01987

    Article  PubMed  PubMed Central  Google Scholar 

  • Petanović RU (2016) Towards an integrative approach to taxonomy of Eriophyoidea (Acari, Prostigmata)—an overview. Ecol Mont 7:580–599

    Article  Google Scholar 

  • Petanović RU, Kielkiewicz M (2010) Plant-eriophyoid mite interactions: specific and unspecific morphological alterations. Part II. Exp Appl Acarol 51:81–91. https://doi.org/10.1007/978-90-481-9562-6_5

    Article  PubMed  Google Scholar 

  • Ramezani M, Amin G, Jalili E (2010) Antinociceptive and anti-inflammatory effects of hydroalcoholic extract of Vitex agnus-castus fruit in mice. J Shahrekord Univ Med Sci 11:46–51

    Google Scholar 

  • Roivainen H (1953) Some gall mites (Eriophyidae) from Spain. Arch Inst Aclimat 1:9–43

    Google Scholar 

  • Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. World Crop Pests, vol 6. Elsevier Science Publishing, Amsterdam, pp 329–366

    Chapter  Google Scholar 

  • Schopmeyer CS (1974) Seeds of woody plants in the United States. U.S. Dep. Agric., Forest Service Agricultural Handbook 450, Washington, DC, 883 pp

  • Schulz V, Hansel R, Tyler VE (1998) Rational phytotherapy: a physicians’ guide to herbal medicine. Springer, New York

    Book  Google Scholar 

  • Skoracka A, Dabert M (2010) The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bull Entomol Res 100:263–272. https://doi.org/10.1017/S0007485309990216

    Article  CAS  PubMed  Google Scholar 

  • Skoracka A, Smith L, Oldfield G, Cristofaro M, Amrine JWJr (2010) Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Exp Appl Acarol 51(1–3):93–113. https://doi.org/10.1007/s10493-009-9323-6

    Article  PubMed  Google Scholar 

  • Skoracka A, Kuczyński L (2012) Measuring the host specificity of plant-feeding mites based on field data-a case study of the Aceria species. Biologia 67:546–560

    Article  Google Scholar 

  • Skoracka A, Kuczyński L, Rector B, Amrine JW Jr (2014) Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach. Biol J Linn Soc 111:421–436. https://doi.org/10.1111/bij.1221

    Article  Google Scholar 

  • Skoracka A, Magalhães S, Rector BG, Kuczyński L (2015) Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? Exp Appl Acarol 67:165–182. https://doi.org/10.1007/s10493-015-9954-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Tajaddod S, Lotfollahi P, de Lillo E (2018) Two new Aceria species (Acari: Trombidiformes: Eriophyoidea) from Ajabshir, Iran. Syst Appl Acarol 23(2):305–313. https://doi.org/10.11158/saa.23.2.7

    Article  Google Scholar 

  • The Plant List (2013) Version 1.1. https://doi.org/http://www.theplantlist.org (accessed 1 Jan 2020)

  • Tomasi E (2014) Indagine cecidologica sulla pianura e le lagune friulane (Italia NE). Atti Mus Civ St Nat Trieste 56:43–202

    Google Scholar 

  • Uzun M, Kaya A (2016) Ethnobotanical research of medicinal plants in Mihalgazi (Eskişehir, Turkey). Pharm Biol 54(12):2922–2932. https://doi.org/10.1080/13880209.2016.1194863

    Article  PubMed  Google Scholar 

  • Vidović B, Kamali H, Petanović R, Cristofaro M, Weyl P, Ghorbanali A, Cvrković T, Augé M, Marini F (2018) A new Aceria species (Acari: Trombidiformes: Eriophyoidea) from West Asia, a potential biological control agent for the invasive weed camelthorn, Alhangi maurorum Medik (Leguminosae). Acarologia 58:302–312. https://doi.org/10.24349/acarologia/20184243

    Article  Google Scholar 

  • Xue XF, Dong Y, Deng W, Hong XY, Shao R (2017) The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18) rRNA gene. Mol Phylogen Evol 109:271–282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Nicola Vovlas IPSP CNR, Bari UOS (Italy) for suggestions and useful comments on the manuscript, to Nicola Trisciuzzi and Simona Santoro of CRSFA (Locorotondo, Italy) and Hortoservice (Noicattaro, Italy), respectively, for their help and assistance during the mite collections. The authors thank a lot the reviewers for all suggestions improving the manuscript. This study was partly supported by the University ‘Aldo Moro’ of Bari.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrico de Lillo or Francesca De Luca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

10493_2020_518_MOESM2_ESM.png

Phylogenetic trees of mitochondrial COI of Acerie massalongoi and the closest species. Sequences were analysed using Maximum Likelihood method. Number at nodes indicate bootstrap values. Supplementary file2 (PNG 710 kb)

10493_2020_518_MOESM3_ESM.png

Phylogenetic trees of the D2 expansion domain of the 28S rRNA gene of Aceria massalongoi and the closest species. Sequences were analysed using Maximum Likelihood method. Number at nodes indicate bootstrap values. Supplementary file3 (PNG 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lillo, E., Fanelli, E., Valenzano, D. et al. Characterisation of Aceria massalongoi and a histopathological study of the leaf galls induced on chaste trees. Exp Appl Acarol 82, 33–57 (2020). https://doi.org/10.1007/s10493-020-00518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00518-x

Keywords

Navigation