Skip to main content

Advertisement

Log in

Rhizobacterial communities and fine root traits together reveal variations in growth performance of Quercus acutissima in different provenances

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

It is important to understand the variations in intraspecific growth performance for forest management. We evaluated the relationships among fine root traits, rhizobacterial community structure, and growth variables in different oak (Quercus acutissima) provenances. Four oak provenances with different growth performances were studied. In each provenance, growth variables, fine root traits, rhizosphere soil chemical properties, and rhizobacterial abundance were measured. The structure of rhizobacterial communities was assessed by 16S rRNA gene sequencing. The co-occurrence patterns of bacterial taxa were analyzed by network analysis. The relative contribution of fine root traits and rhizobacterial communities to variations in growth performance was evaluated by hierarchical partitioning analysis. Growth performance of the four oak provenances was positively correlated with the specific root length. The β-diversity of rhizobacterial communities, but not α-diversity, was positively correlated with the growth variables. The relative abundance of Actinobacteria (e.g., Actinospica and Conexibacter genera) increased with aboveground biomass. The co-occurrence network analysis showed more clusters with highly interconnected taxa in the high-yielding provenances. Variation in growth performance of oak in different provenances was significantly affected by the rhizobacterial community structure and fine root traits, with the former being a more prominent factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DBH:

Diameter at breast height (cm)

AGB:

Aboveground biomass (kg tree−1)

SRL:

Specific root length (m g−1)

RN:

N concentration in fine roots (mg kg−1)

RP:

P concentration in fine roots (mg kg−1)

RN:RP:

Ratio of N to P concentration in fine roots

SOC:

Organic carbon in the rhizosphere soil (g kg−1)

AN:

Alkali-hydrolysable nitrogen in the rhizosphere soil (g kg−1)

AP:

Available phosphorus in the rhizosphere soil (mg kg−1)

AK:

Available potassium in the rhizosphere soil (mg kg−1)

pH:

Acidity and alkalinity of the rhizosphere soil

References

  • Bao S (2000) Soil agrochemical analysis (3rd Ed). China Agricultural Press Beijing. (in Chinese)

  • Barzdajn W, Kowalkowski W, Chmura DJ (2016) Variation in growth and survival among European provenances of Pinus sylvestris in a 30-year-old experiment. Dendrobiology 75:67–77

    Article  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29:260–273

    Google Scholar 

  • Bell CW, Asao S, Calderon F, Wolk B, Wallenstein MD (2015) Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biol Biochem 85:170–182

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bischoff A, Steinger T, Müller-Schärer H (2010) The importance of plant provenance and genotypic diversity of seed material used for ecological restoration. Restor Ecol 18:338–348

    Article  Google Scholar 

  • Brenes-Arguedas T, Roddy AB, Kursar TA (2013) Plant traits in relation to the performance and distribution of woody species in wet and dry tropical forest types in Panama. Funct Ecol 27:392–402

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefer P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Munch PC, Weiman A, Droge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderón K, Spor A, Breuil MC, Bru D, Bizouard F, Violle C, Barnard RL, Philippot L (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11:272–283

    Article  PubMed  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8:e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Xie H, Zhang L, Wang M, Li C, Yu M, He Z (2017) A comparative study of growth and leaf trait variation in twenty Cornus wilsoniana W. families in southeastern China. iForest 10:759

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96

    Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, BrownT Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Eissenstat DM (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Article  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous KY, Drake JE, Aspinwall MJ, Sharwood RE, Tjoelker MG, Ghannoum O (2018) Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species. Global Change Boil 24:4626–4644

    Article  Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sect B Biol Sci 85:1–12

    Article  CAS  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943

    Article  Google Scholar 

  • Erktan A, Mccormack ML, Roumet C (2018) Frontiers in root ecology: recent advances and future challenges. Plant Soil 424:1–9

    Article  CAS  Google Scholar 

  • Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115:E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM (2017) Climate, soil and plant functional types as drivers of global fine-root trait variation. J Ecol 105:1182–1196

    Article  Google Scholar 

  • Gallart M, Adair KL, Love J, Meason DF, Clinton PW, Xue J, Turnbull MH (2018) Genotypic variation in Pinus radiata responses to nitrogen source are related to changes in the root microbiome. FEMS Microbial Ecol 94:fiy071

  • Gibert A, Gray EF, Westoby M, Wright IJ, Falster DS (2016) On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. J Ecol 104:1488–1503

    Article  Google Scholar 

  • Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Hajek P, Hertel D, Leuschner C (2013) Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Front Plant Sci 4:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213

    Article  CAS  Google Scholar 

  • Hol WH, De Boer W, de Hollander M, Kuramae EE, Meisner A, van der Putten WH (2015) Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Front Plant Sci 6:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Zhou L, Chen J, Wei T (2020). ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.7

  • Isaac ME, Martin AR, de Melo VFE, Rapidel B, Roupsard O, Van den Meersche K (2017) Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Front Plant Sci 8:1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, et al. (2019) vegan: Community Ecology Package 2.4-4

  • Kleinschmit J (1993) Intraspecific variation of growth and adaptive traits in European oak species. Ann Sci For 50(S):166s–185s

    Article  Google Scholar 

  • Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1299–1310

    Article  Google Scholar 

  • Kundu SK, Tigerstedt PMA (1999) Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica). Tree Physiol 19:47–52

    Article  PubMed  Google Scholar 

  • Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol Biochem 42:162–168

    Article  CAS  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasa AV, Fernández-González AJ, Villadas PJ, Toro N, Fernández-López M (2019) Metabarcoding reveals that rhizospheric microbiota of Quercus pyrenaica is composed by a relatively small number of bacterial taxa highly abundant. Sci Rep 9:1–13

    Article  CAS  Google Scholar 

  • Layeghifard M, Hwang DM, Guttman DS (2017) Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 25:217–228

    Article  CAS  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dang JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Li FL, Bao WK (2015) New insights into leaf and fine-root trait relationships: implications of resource acquisition among 23 xerophytic woody species. Ecol Evol 5:5344–5351

    Article  PubMed  PubMed Central  Google Scholar 

  • Liese R, Alings K, Meier IC (2017) Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front Plant Sci 8:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Lottmann J, O’Callaghan M, Baird D, Walter C (2010) Bacterial and fungal communities in the rhizosphere of field-grown genetically modified pine trees (Pinus radiata D.). Environ Biosaf Res 9:25–40

    Article  CAS  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, vander Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker P, Raaijmakers J (2011) Deciphering the rhizosphere microbiome. Science 1097:1097–1100

    Article  CAS  Google Scholar 

  • Na X, Xu T, Li M, Zhou Z, Ma S, Wang J, He J, Jiao B, Ma F (2018) Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients. Front Microbio 9:709

    Article  Google Scholar 

  • Navarro-Cano JA, Goberna M, Valiente-Banuet A, Montesinos-Navarro A, García C, Verdú M (2014) Plant phylodiversity enhances soil microbial productivity in facilitation-driven communities. Oecologia 174:909–920

    Article  PubMed  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Parts K, Tedersoo L, Schindlbacher A, Sigurdsson BD, Leblans NI, Oddsdóttir ES, Borken W, Ostonen I (2019) Acclimation of fine root systems to soil warming: comparison of an experimental setup and a natural soil temperature gradient. Ecosystems 22:457–472

    Article  CAS  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Valera E, Goberna M, Verdú M (2015) Phylogenetic structure of soil bacterial communities predicts ecosystem functioning. FEMS Microbiol Ecol 91:fiv031

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Qi G, Ma G, Chen S, Lin C, Zhao X (2019) Microbial network and soil properties are changed in bacterial wilt-susceptible soil. Appl Environ Microbiol 85:e00162-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Saleem M, Hu J, Jousset A (2019) More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst 50:145–168

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  • Singh BK, Quince C, Macdonald CA, Khachane A, Thomas N, Al-Soud WA, Sørensen SJ, He Z, White D, Sinclair A, Crooks B, Zhou J, Campbell CD (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol 16:2408–2420

    Article  PubMed  Google Scholar 

  • Singh M, Awasthi A, Soni SK, Singh R, Verma RK, Kalra A (2015) Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci Rep 5:15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade EM, Kirwan L, Bell T, Philipson CD, Lewis OT, Roslin T (2017) The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued. Ecology 98:2626–2639

    Article  PubMed  Google Scholar 

  • Stojnić S, Orlović S, Pilipović A, Vilotić D, Šijačić-Nikolić M, Miljković D (2012) Variation in leaf physiology among three provenances of European beech (Fagus sylvatica L.) in provenance trial in Serbia. Genetika 44:341–353

    Article  Google Scholar 

  • Tobner CM, Paquette A, Messier C (2013) Interspecific coordination and intraspecific plasticity of fine root traits in North American temperate tree species. Front Plant Sci 4:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulbrichová I, Podrázský V, Beran F, Zahradník D, Fulín M, Procházka J, Kubeček J (2015) Picea abies provenance test in the Czech Republic after 36 years-Central European provenances. J For Sci 61:465–477

    Article  Google Scholar 

  • Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017) A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol 215:1562–1573

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14:e1002378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Yu K, Lv S, Niklas KJ, Mipam TD, Crowther TW, Umaña MN, Zha Q, Huang H, Reich PB (2019) The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis. Funct Ecol 33:2081–2094

    Article  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weemstra M, Mommer L, Visser EJ, van Ruijven J, Kuyper TW, Mohren GM, Sterck FJ (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Hu X, Li X, Zhang Y, Jiang L, Li J, Guan Z, Cai Y, Liao X (2017) The rhizospheric microbial community structure and diversity of deciduous and evergreen forests in Taihu lake area, China. PLoS ONE 12:e0174411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A (2015) Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Funct Ecol 29:1341–1349

    Article  Google Scholar 

  • Wood SA, Almaraz M, Bradford MA, McGuire KL, Naeem S, Neill C, Palm CA, Tully KL, Zhou J (2015) Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture. Front Microbiol 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Duan A, Zhang J (2019) Long-term growth variation and selection of geographical provenances of Cunninghamia lanceolata (Lamb.) Hook. Forests 10:876

  • Yuan ZY, Chen HYH, Reich PB (2011) Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat Commun 2:344

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  CAS  Google Scholar 

  • Zhang H, Yang X, Wang J, Wang GG, Yu M, Wu T (2017a) Leaf N and P stoichiometry in relation to leaf shape and plant size for Quercus acutissima provenances across China. Sci Rep 7:46133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yang X, Yu M, Han Y, Wu T (2017b) Variations in seed size and seed mass related to tree growth over 5 years for 23 provenances of Quercus acutissima from across China. J For Res 28:917–923

    Article  Google Scholar 

  • Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B, Zhou J, Yang Y (2014) Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J 8:2045–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Non-profit Research Institution of CAF (CAFYBB2018ZB001-3) and the National Forestry Public Welfare Research Project of China (No. 200704034). We would like to thank Editage (www.editage.cn) for their assistance with English language editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. XC, YW, and MY conceived and planned the experiments. Data collection and analysis were performed by XC, YJ, HX, and WX. The first draft of the manuscript was written by Xiangrong Cheng, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mukui Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Oliver Gailing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Yuan, H., Xu, H. et al. Rhizobacterial communities and fine root traits together reveal variations in growth performance of Quercus acutissima in different provenances. Eur J Forest Res 139, 1091–1105 (2020). https://doi.org/10.1007/s10342-020-01312-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-020-01312-5

Keywords

Navigation