Skip to main content

Advertisement

Log in

Trade-offs Between Wood and Leaf Production in Arctic Shrubs Along a Temperature and Moisture Gradient in West Greenland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Warming environmental conditions are often credited with increasing Arctic shrub growth and altering abundance and distribution, yet it is unclear whether tundra shrub expansion will continue into future decades. Water availability may begin to limit Arctic shrub growth if increasing air temperatures create drier soil conditions due to increased evapotranspiration and permafrost-thaw-induced soil drainage. However, few studies have effectively considered how dominant tundra shrub species respond to variations in both temperature and moisture. To better understand the key effects of temperature variation and soil moisture on two dominant circumpolar deciduous shrubs, we studied shrub growth along a natural landscape gradient in West Greenland, which is a region observed to be drying due to ongoing warming. We found that the growth forms of both grey willow (Salix glauca) and dwarf birch (Betula nana) were sensitive to warmer and drier conditions. For both species, increases in air temperature positively correlated with greater shrub volume, with the doubling of canopy volume due to increased woody biomass. Leaf biomass was best predicted by edaphic features including extractable ammonium, which was positively related to soil moisture, and bulk density. Warmer soils tended to be drier, suggesting that ongoing warming in the area could lead to significant water limitation. Our findings suggest that drier soil conditions might be limiting foliar production despite warming temperatures for two circumpolar dominant shrubs, Betula nana and Salix glauca, which could have wide-ranging, biome-level consequences about ongoing and predicted shrub growth and expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ackerman D, Griffin D, Hobbie SE, Finlay JC. 2017. Arctic shrub growth trajectories differ across soil moisture levels. Glob Chang Biol 23:4294–302.

    Article  Google Scholar 

  • Addis CE, Bret-Harte MS. 2019. The importance of secondary growth to plant responses to snow in the arctic. Funct Ecol 33:1050–66. https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.13323. Last accessed 24/03/2020.

  • Aerts R. 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–24.

    Article  Google Scholar 

  • Andresen CG, Lawrence DM, Wilson CJ, David McGuire A, Koven C, Schaefer K, Jafarov E, Peng S, Chen X, Gouttevin I, Burke E, Chadburn S, Ji D, Chen G, Hayes D, Zhang W. 2020. Soil moisture and hydrology projections of the permafrost region-a model intercomparison. Cryosphere 14:445–59.

    Article  Google Scholar 

  • Barrio IC, Lindén E, te Beest M, Olofsson J, Rocha A, Soininen EM, Alatalo JM, Andersson T, Asmus A, Bioke J, Bråthen KA, Bryant JP, Buchwal A, Bueno CG, Christie KS, Egelkraut D, Ehrich D, Fishback L, Forbes BC, Gartzia M, Grogan P, Hallinger M, Heijmans MMPD, Hik DS, Hofgaard A, Holmgren M, Høye TT, Huebner DC, Jónsdóttir IS, Kaarlejärvi E, Kumpula T, Lange C, Lange J, Lévesque E, Limpens J, Myers-Smith IH, van Nieukerken EJ, Normand S, Post ES, Schmidt NM, Sitters J, Sokolov A, Sokolova N, Speed JDM, Street LE, Sundqvist MK, Suominen O, Tananaev N, Tremblay JP, Urbanowicz C, Watts D, Wilmking M, Wookey PA, Wright V, Zimmermann H, Zverev V, Kozlov M. 2018. Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biol 40:2265–78.

    Article  Google Scholar 

  • Bjorkman AD, Criado MG, Myers-Smith IH, Ravolainen V, Jonsdottir I, Westergaard KB, Lawler JP, Aronsson M, Bennett B, Gardfjell H, Heiðmarsson S, Stewart L, Normand S. 2020. Status and trends in Arctic vegetation : Evidence from experimental warming and long-term monitoring. Ambio 49:678–92.

    Article  Google Scholar 

  • Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC, Forbes BC, Georges D, Goetz SJ, Guay KC, Henry GHR, HilleRisLambers J, Hollister RD, Karger DN, Kattge J, Manning P, Prevéy JS, Rixen C, Schaepman-Strub G, Thomas HJD, Vellend M, Wilmking M, Wipf S, Carbognani M, Hermanutz L, Lévesque E, Molau U, Petraglia A, Soudzilovskaia NA, Spasojevic MJ, Tomaselli M, Vowles T, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Beest M te, Berner L, Björk RG, Buchwal A, Buras A, Christie K, Cooper EJ, Dullinger S, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Harper KA, Heijmans MMPD, Hudson J, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Johnstone JF, Jørgensen RH, Kaarlejärvi E, Klady R, Kuleza S, Kulonen A, Lamarque LJ, Lantz T, Little CJ, Speed JDM, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Rumpf SB, Semenchuk P, Shetti R, Collier LS, Street LE, Suding KN, Tape KD, Trant A, Treier UA, Tremblay J-P, Tremblay M, Venn S, Weijers S, Zamin T, Boulanger-Lapointe N, Gould WA, Hik DS, Hofgaard A, Jónsdóttir IS, Jorgenson J, et al. 2018. Plant functional trait change across a warming tundra biome. Nature:1. http://www.nature.com/articles/s41586-018-0563-7. Last accessed 27/09/2018.

  • Blok D, Heijmans MMPD, Van Ruijven J, Parmentier FJW, Maximov TC, Berendse F. 2011. The Cooling Capacity of Mosses : Controls on Water and Energy Fluxes in a Siberian Tundra Site. Ecosystems 14:1055–65.

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol 16:1296–305.

    Article  Google Scholar 

  • Bradley-Cook JI, Virginia RA. 2018. Landscape variation in soil carbon stocks and respiration in an Arctic tundra ecosystem, west Greenland. Arct Antarct Alp Res 50. http://www.tandfonline.com/action/journalInformation?journalCode=uaar20. Last accessed 04/10/2018.

  • Bråthen KA, Hagberg O. 2004. More Efficient Estimation of Plant Biomass. Source J Veg Sci 15:653–60. https://www.jstor.org/stable/3236592. Last accessed 20/05/2019.

  • Bret-Harte MS, Shaver GR, Chapin FSI. 2002. Primary and secondary stem growth in arctic shrubs : implications for community response to environmental change. J Ecol 910:251–67.

    Article  Google Scholar 

  • Chapin FI. 1980. The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–60.

    Article  CAS  Google Scholar 

  • Chapin FI, Sturm M, Serreze MC, McFadden J, Key JR, Lloyd AH, Mcguire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen S, Hinzman LD, Jia G, Ping C, Tape KD, Thompson CDC, Walker DA, Welker JM. 2005. Role of land-surface changes in Arcitc summer warming. Science (80-) 310:657–60.

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Responses of Arctic Tundra to Experimental and Observed Changes in Climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Demarco J, Mack MC, Bret-Harte MS. 2014. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95:1861–75.

    Article  Google Scholar 

  • Derksen C, Brown R. 2012. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys Res Lett 39:1–6. http://www.cru.uea.ac.uk/cru/data/temperature/. Last accessed 26/08/2019.

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan T V, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland O, Troxler T, Wahren C-H, Webber PJ, Welker JM, Wookey PA. 2012. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–75. http://www.ncbi.nlm.nih.gov/pubmed/22136670.

  • Epstein HE, Bhatt US., Raynolds MK, Walker DA, Bieniek PA, Tucker CJ, Pinzon J, Myers-Smith IH, Forbes BC, Macias-Fauria M, Boelman NT, Sweet SK. 2017. Tundra Greenness. http://www.arctic.noaa.gov/reportcard/.

  • Finger Higgens RA, Chipman JW, Lutz DA, Culler LE, Virginia RA, Ogden LA. 2019. Changing Lake Dynamics Indicate a Drier Arctic in Western Greenland. J Geophys Res Biogeosciences:1–14.

  • Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES. 2016. Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. J Ecol 104:1542–54.

    Article  Google Scholar 

  • Frost GV, Epstein HE. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob Chang Biol 20:1264–77.

    Article  Google Scholar 

  • Gamm CM, Sullivan PF, Buchwal A, Dial RJ, Young AB, Watts DA, Cahoon SMP, Welker JM, Post E. 2017. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J Ecol:1–15. http://doi.wiley.com/10.1111/1365-2745.12882.

  • Göckede M, Kwon MJ, Kittler F, Heimann M, Zimov N, Zimov S. 2019. Negative feedback processes following drainage slow down permafrost degradation. Glob Chang Biol:3254–66. http://doi.wiley.com/10.1111/gcb.14744.

  • Grosse G, Goetz S, McGuire AD, Romanovsky VE, Schuur EAG. 2016. Changing permafrost in a warming world and feedbacks to the Earth system. Environ Res Lett 11:1–10. http://iopscience.iop.org/article/10.1088/1748-9326/11/4/040201/pdf. Last accessed 01/08/2018.

  • Heindel RC, Chipman JW, Virginia RA. 2015. The Spatial Distribution and Ecological Impacts of Aeolian Soil Erosion in Kangerlussuaq, West Greenland. Ann Assoc Am Geogr 105:875–90. http://www.tandfonline.com/doi/full/10.1080/00045608.2015.1059176.

  • Hicks Pries CE, Schuur EAG, Vogel JG, Natali SM. 2013. Moisture drives surface decomposition in thawing tundra. J Geophys Res Biogeosciences 118:1133–43.

    Article  Google Scholar 

  • Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22. https://www.jstor.org/stable/pdf/2963492.pdf?refreqid=excelsior%3A54fdd35b556a3b650aa764c4fe954cbb. Last accessed 19/07/2019.

  • Hudson J, Henry G, Cornwell W. 2011. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob Chang Biol 17:1013–21. http://pcigr.eos.ubc.ca. Last accessed 19/07/2019.

  • Kerby JT, Post E. 2013. Advancing plant phenology and reduced herbivore production in a terrestrial system associated with sea ice decline. Nat Commun 4:1–6. http://www.nature.com/doifinder/10.1038/ncomms3514.

  • Keuper F, Bodegom PM, Dorrepaal E, Weedon JT, Hal J, Logtestijn RSP, Aerts R. 2012. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob Chang Biol 18:1998–2007.

    Article  Google Scholar 

  • Kopec BG, Lauder AM, Posmentier ES, Feng X. 2014. The diel cycle of water vapor in west Greenland. J Geophys Res Atmos 119:1–14.

    Article  Google Scholar 

  • Law AC, Nobajas A, Sangonzalo R. 2018. Heterogeneous changes in the surface area of lakes in the Kangerlussuaq area of southwestern Greenland between 1995 and 2017. Arctic, Antarct Alp Res 50. http://www.tandfonline.com/action/journalInformation?journalCode=uaar20. Last accessed 24/09/2018.

  • Loranty MM, Abbott BW, Blok D, Douglas TA, Epstein HE, Forbes BC, Jones BM, Kholodov AL, Kropp H, Malhotra A, Mamet SD, Myers-Smith IH, Natali SM, O’donnell JA, Phoenix GK, Rocha A V, Sonnentag O, Tape KD, Walker DA. 2018. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15:5287–313. https://doi.org/10.5194/bg-15-5287-2018. Last accessed 15/04/2019.

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FSI. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–3.

    Article  CAS  Google Scholar 

  • Martin A, Jeffers ES, Petrokofsky G, Myers-Smith I, Fauria M. 2017a. Shrub growth expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach. Environ Res Lett 12:1–13. https://doi.org/10.1088/1748-9326/aa7989. Last accessed 07/05/2019.

  • Martin AC, Jeffers ES, Petrokofsky G, Myers-Smith I, Macias-Fauria M. 2017b. Shrub growth and expansion in the Arctic tundra : an assessment of controlling factors using an evidence-based approach Shrub growth and expansion in the Arctic tundra : an assessment of controlling factors using an evidence-based approach. Environ Res Lett 12:1–13.

    Article  CAS  Google Scholar 

  • Metcalfe DB, G Hermans TD, Ahlstrand J, Becker M, Berggren M, Bjamp RG, Bjamp MP, Blok D, Chaudhary N, Chisholm C, Classen T, Hasselquist NJ, Jonsson M, Kristensen JA, Kumordzi BB, Lee H, Mayor JR, Prevamp J, Pantazatou K, Rousk J, Sponseller RA, Sundqvist MK, Tang J, Uddling J, Wallin R, Zhang W, Ahlstramp A, Tenenbaum DE, Abdi AM. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat Ecol Evol 2:1443–8. https://doi.org/10.1038/s41559-018-0612-5. Last accessed 19/07/2018.

  • Molau U, Edlund S. 1996. ITEX manual. In: Molau U, Molgaard P, editors. International Tundra Experiment. Second Edi. Danish Polar Center. pp 23–32.

  • Murphy KL, Klopatek JM, Klopatek CC. 1998. The Effects of Litter Quality and Climate on Decomposition along an Elevational Gradient. Ecol Appl 8:1061–71. https://www.researchgate.net/publication/253047614. Last accessed 07/08/2019.

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Levesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jorgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Chang 5:887–91.

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback Sa, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509.

    Article  Google Scholar 

  • Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers-Blondin S, Beck PSA, Berner LT, Bhatt US, Bjorkman AD, Blok D, Bryn A, Christiansen CT, Hans J, Cornelissen C, Cunliffe AM, Elmendorf SC, Forbes BC, Goetz SJ, Hollister RD, De Jong R, Loranty MM, Macias-Fauria M, Maseyk K, Normand S, Olofsson J, Parker TC, Parmentier F-JW, Post E, Schaepman-Strub G, Stordal F, Sullivan PF, Thomas HJD, Tømmervik H, Treharne R, Tweedie CE, Walker DA, Wilmking M, Wipf S. 2020. Complexity revealed in the greening of the Arctic. Nat Clim 10:106–17. https://doi.org/10.1038/s41558-019-0688-1. Last accessed 03/02/2020.

  • Myers-Smith IH, Thomas HJD, Bjorkman AD. 2019. Plant traits inform predictions of tundra responses to global change. New Phytol 221:1742–8. https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.15592. Last accessed 05/04/2019.

  • Norby RJ, Sloan VL, Iversen CM, Childs J. 2019. Controls on Fine-Scale Spatial and Temporal Variability of Plant-Available Inorganic Nitrogen in a Polygonal Tundra Landscape. Ecosystems 22:528–43. https://doi.org/10.1007/s10021-018-0285-6. Last accessed 16/07/2019.

  • O’Donnell JA, Jorgenson MT, Harden JW, McGuire AD, Kanevskiy MZ, Wickland KP. 2011. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15:213–29. http://link.springer.com/10.1007/s10021-011-9504-0. Last accessed 25/05/2014.

  • Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GHR, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G. 2007. Tundra CO2 fluxes in response to experimental warming across lattitudinal and moisture gradients. Ecol Monogr 77:221–38. http://www.esajournals.org/doi/pdf/10.1890/06-0649.

  • Osterkamp TE, Jorgenson MT, Schuur EAG, Shur YL, Kanevskiy MZ, Vogel JG. 2009. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr Periglac Process 20:235–56.

    Article  Google Scholar 

  • Parastatidis D, Mitraka Z, Chrysoulakis N, Abrams M. 2017. Online global land surface temperature estimation from landsat. Remote Sens 9:1–16.

    Article  Google Scholar 

  • Pearson RG, Phillips SJ, Loranty MM, Beck PS a., Damoulas T, Knight SJ, Goetz SJ. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat Clim Chang 3:673–7. http://www.nature.com/doifinder/10.1038/nclimate1858.

  • Robinson CH, Wookey PA, Parsons AN, Potter JA, Callaghan TV, Lee JA, Press MC, Welker J. 1995. Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath. Oikos 74:503–12.

    Article  Google Scholar 

  • Salmon VG, Soucy P, Mauritz M, Celis G, Natali SM, Mack MC, Schuur EAG. 2016. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob Chang Biol 22:1927–41. http://doi.wiley.com/10.1111/gcb.13204.

  • Saros JE, Anderson NJ, Juggins S, McGowan S, Yde JC, Telling J, Bullard JE, Yallop ML, Heathcote AJ, Burpee BT, Fowler RA, Barry CD, Northington RM, Osburn CL, Pla-Rabes S, Mernild S, Whiteford EJ, Andrews MG, Kerby JT, Post E. 2019. Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environ Res Lett. https://creativecommons.org/licences/by/3.0. Last accessed 11/07/2019.

  • Schädel C, Bader MK-F, Schuur EA, Biasi C, Bracho R, Čapek P, De Baets S, Diáková K, Ernakovich J, Estop-Aragones C, Graham DE, Hartley IP, Iversen CM, Kane E, Knoblauch C, Lupascu M, Martikainen PJ, Natali SM, Norby RJ, O JA, Roy Chowdhury T, Šantrůčková H, Shaver G, Sloan VL, Treat CC, Turetsky MR, Waldrop MP, Wickland KP. 2016. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat Clim Chang 6:950–5. www.nature.com/natureclimatechange. Last accessed 26/08/2019.

  • Schimel DS, Braswell BH, Parton WJ. 1997. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proc Natl Acad Sci 94:8280–3. https://www.pnas.org/content/pnas/94/16/8280.full.pdf. Last accessed 11/10/2019.

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.

    Article  Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A. 2002. Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil 242:93–106. https://link.springer.com/content/pdf/10.1023%2FA%3A1019642007929.pdf. Last accessed 16/07/2019.

  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. https://www.nature.com/articles/nmeth.2089.pdf. Last accessed 28/05/2019.

  • Schuur EAG, McGuire ADD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–9. http://www.nature.com/doifinder/10.1038/nature14338.

  • Sturm M, Charles R, Tape K. 2000. Climate change: Increasing shrub abundance in the Arctic. Nature 411:546–7.

    Article  Google Scholar 

  • Sturm M, Schimel J, Michaelson GJ, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE. 2005. Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland. Bioscience 55:17. http://bioscience.oxfordjournals.org/content/55/1/17.full. Last accessed 19/10/2015.

  • Swanson DK. 2015. Environmental Limits of Tall Shrubs in Alaska’s Arctic National Parks. PLoS One 10:e0138387. http://www.ncbi.nlm.nih.gov/pubmed/26379243. Last accessed 05/08/2019.

  • Team RC. 2019. R: A language for statistical computing.

  • Urbanowicz C, Virginia RA, Irwin RE. 2018. Pollen limitation and reproduction of three plant species across a temperature gradient in western Greenland. Arctic, Antarct Alp Res 50:S100022. https://www.tandfonline.com/doi/full/10.1080/15230430.2017.1414485. Last accessed 08/08/2018.

  • Walker DA. 2000. Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Glob Chang Biol 6:19–34.

    Article  Google Scholar 

  • Wickham H. 2017. tidyverse: Easily Install and Load the ‘Tidyverse’.

  • Young AB, Watts DA, Taylor AH, Post E. 2016. Species and site differences influence climate-shrub growth responses in West Greenland. Dendrochronologia 37:69–78. http://linkinghub.elsevier.com/retrieve/pii/S1125786515000946.

Download references

Acknowledgements

We thank Melissa DeSiervo, Francesca Governali, Alexandra Stendhal, Edward Darling, and Paul Zietz for their assistance with field and laboratory work. We also thank Kathy Cottingham, Eric Post, and two anonymous reviewers for comments on an earlier version of the manuscript. This research was supported by a National Science Foundation Office of Polar Programs (Award No. 1506155) to R. Virginia and a 2017 American Alpine Club Research Grant awarded to R. Finger Higgens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Finger Higgens.

Additional information

Author contributions: RFH conceived of and designed study, performed research, analyzed data, and wrote the paper; CHP helped with data analysis and writing the paper; RAV helped with research and writing the paper. Data from this study are archived with the Arctic Data Center. https://arcticdata.io/catalog/view/urn:uuid:3c55fe83-77a8-4631-8f03-62f49eced59d.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higgens, R.F., Pries, C.H. & Virginia, R.A. Trade-offs Between Wood and Leaf Production in Arctic Shrubs Along a Temperature and Moisture Gradient in West Greenland. Ecosystems 24, 652–666 (2021). https://doi.org/10.1007/s10021-020-00541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00541-4

Keywords

Navigation