Skip to main content

Advertisement

Log in

Apparent recruitment failure for the vast majority of coral species at Eilat, Red Sea

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2021

This article has been updated

Abstract

The status of coral reefs is often portrayed by parameters (e.g., coverage, bleaching, diseases, nutrients and rugosity) assigned to adult populations. Yet, coral recruitment is essential for sustaining coral populations, especially in the aftermath of major disturbances. Studying earliest coral recruitment at species level can reveal declines in the recovery potential and resilience of coral populations and communities, even if adult abundance and coral cover is sustained. Rates of coral recruitment were quantified once a month for 4 yrs from tiles and stones (Eilat, Red Sea), revealing a dramatic discrepancy in coral species recruited (n = 15) compared to adult-species currently on site (n = 55), with 1–2 dominant species accounting for ≥ 80% of recruits. The low rates and limited diversity of settling corals recorded in this study appear unlikely to sustain contemporary coral assemblages, so unless there are marked changes in the settlement dynamics, we would expect to see inevitable declines in the abundance and diversity of reef corals at these locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Abelson A, Olinky R, Gaines S (2005) Coral recruitment to the reefs of Eilat, Red Sea: temporal and spatial variation, and possible effects of anthropogenic disturbances. Mar Pollut Bull 50:576–582

    Article  CAS  PubMed  Google Scholar 

  • Adjeroud M, Penin L, Carroll A (2007) Spatio-temporal heterogeneity in coral recruitment around Moorea, French Polynesia: implications for population maintenance. J Exp Mar Bio Ecol 341:204–218

    Article  Google Scholar 

  • Adjeroud M, Kayal M, Penin L (2017) Importance of recruitment processes in the dynamics and resilience of coral reef assemblages. Marine Animal Forests. Springer International Publishing, Cham, pp 549–569

    Google Scholar 

  • Babcock RC, Baird AH, Piromvaragorn S, Thomson DP, Willis BL (2003) Identification of scleractinian coral recruits from Indo-Pacific reefs. Zool Stud 42:211–226

    Google Scholar 

  • Baird AH, Salih A, Trevor-Jones A (2006) Fluorescence census techniques for the early detection of coral recruits. Coral Reefs 25:73–76

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Berenshtein I (2018) Israel Nature and Parks Authority report: Connectivity in the Gulf of Aqaba/Eilat, p 27. https://doi.org/10.13140/rg.2.2.17500.64643

  • Bindoff NL, Cheung WWL, Kairo JG, Arstegui J, Guinder VA, Hallberg R, Hilmi N, Jiao N, Karim MS, Levin L, O’Donoghue S, Purca CSR, Rinkevich B, Suga T, Tagliabue A, Williamson P (2019) Changing ocean, marine ecosystems, and dependent communities. In: Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B, Weyer N (eds) IPCC special report on the ocean and cryosphere in a changing climate. IPCC, Geneva, Switzerland

  • Bythell JC, Brown BE, Kirkwood TBL (2017) Do reef corals age? Biol Rev 93:1192–1202

    Article  PubMed  Google Scholar 

  • Chui APY, Ang P (2017) Recruitment failure of scleractinian corals in a subtropical marginal environment: Three-year monitoring in a Hong Kong marine park. Mar Pollut Bull 124:668–677

    Article  CAS  PubMed  Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson JS, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:7

    Article  Google Scholar 

  • Doropoulos C, Evensen NR, Gómez-Lemos LA, Babcock RC (2017) Density-dependent coral recruitment displays divergent responses during distinct early life-history stages. R Soc Open Sci 4:170082

    Article  PubMed  PubMed Central  Google Scholar 

  • Douek J, Barki Y, Gateño D, Rinkevich B (2002) Possible cryptic speciation within the sea anemone Actinia equina complex detected by AFLP markers. Zool J Linn Soc 136:315–320

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis JI, Jamil T, Anlauf H, Coker DJ, Curdia J, Hewitt J, Jones BH, Krokos G, Kürten B, Hariprasad D, Roth F, Carvalho S, Hoteit I (2019) Multiple stressor effects on coral reef ecosystems. Glob Chang Biol 25:4131–4146

    Article  PubMed  Google Scholar 

  • Erwin PM, Song B, Szmant AM (2008) Settlement behavior of Acropora palmata planulae: Effects of biofilm age and crustose coralline algal cover. In: Proc 11th Int Coral Reef Symp, Florida, pp 1219–1223

  • Folmer O, Balck M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Glassom D, Zakai D, Chadwick-Furman NE (2004) Coral recruitment: a spatio-temporal analysis along the coastline of Eilat, northern Red Sea. Mar Biol 144:641–651

    Article  Google Scholar 

  • Glassom D, Celliers L, Schleyer MH (2006a) Coral recruitment patterns at Sodwana Bay, South Africa. Coral Reefs 25:485–492

    Article  Google Scholar 

  • Glassom D, Chadwick NE, Gan R (2006b) Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar Ecol Prog Ser 318:111–122

    Article  Google Scholar 

  • Graham DE (1978) The isolation of high molecular weight DNA from whole organisms or large tissue masses. Anal Biochem 85:609–613

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hsu CM, De Palmas S, Kuo CY, Denis V, Chen CA (2014) Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques. PLoS One 9:e107366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Linares C, Dakos V, van de Leemput IA, van Nes EH (2013) Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol Evol 28:149–155

    Article  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Chase TJ, Dietzel A, Hill T, Hoey AS, Hoogenboom MO, Jacobson M, Kerswell A, Madin JS, Mieog A, Paley AS, Pratchett MS, Torda G, Woods RM (2019) Global warming impairs stock–recruitment dynamics of corals. Nature 568:387–390

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Ricardo GF, Negri AP (2015) Effects of sediments on the reproductive cycle of corals. Mar Pollut Bull 100:13–33

    Article  CAS  PubMed  Google Scholar 

  • Kubicek A, Breckling B, Hoegh-Guldberg O, Reuter H (2019) Climate change drives trait-shifts in coral reef communities. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Lecchini D, Bertucci F, Gache C, Khalife A, Besson M, Roux N, Berthe C, Singh S, Parmentier E, Nugues MM, Brooker RM, Dixson DL, Hédouin L (2018) Boat noise prevents soundscape-based habitat selection by coral planulae. Sci Rep 8:1–9

    Article  CAS  Google Scholar 

  • Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar Biol 13:100–123

    Article  Google Scholar 

  • Loya Y, Slobodkin BL (1971) The coral reefs of Eilat (Gulf of Eilat, Red Sea)*. Symp zool Soc Lond 28:117–139

    Google Scholar 

  • Lukoschek V, Cross P, Torda G, Zimmerman R, Willis BL (2013) The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the central Great Barrier Reef. PLoS One 8:e65363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangubhai S, Harrison PL, Obura DO (2007) Patterns of coral larval settlement on lagoon reefs in the Mombasa Marine National Park and reserve, Kenya. Mar Ecol Prog Ser 348:149–159

    Article  Google Scholar 

  • Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263

    Article  Google Scholar 

  • Martinez S, Abelson A (2013) Coral recruitment: the critical role of early post-settlement survival. ICES J Mar Sci 70:1294–1298

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-9

  • Omori M (2011) Degradation and restoration of coral reefs: experience in Okinawa, Japan. Mar Biol Res 7:3–12

    Article  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science (80-) 333:418–422

    Article  CAS  Google Scholar 

  • Petersen D, Hatta M, Laterveer M, Van Bergen D (2005) Ex situ transportation of coral larvae for research, conservation, and aquaculture. Coral Reefs 24:510–513

    Article  Google Scholar 

  • Piniak GA, Fogarty ND, Addison CM, Kenworthy WJ (2005) Fluorescence census techniques for coral recruits. Coral Reefs 24:496–500

    Article  Google Scholar 

  • Pratchett MS, Baird AH, Bauman AG, Burt JA (2017) Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates. Mar Pollut Bull 114:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Price NN, Muko S, Legendre L, Steneck R, Van Oppen MJH, Albright R, Ang P, Carpenter RC, Chui APY, Fan TY, Gates RD, Harii S, Kitano H, Kurihara H, Mitarai S, Padilla-Gamiño JL, Sakai K, Suzuki G, Edmunds PJ (2019) Global biogeography of coral recruitment: tropical decline and subtropical increase. Mar Ecol Prog Ser 621:1–17

    Article  Google Scholar 

  • Putnam HM, Edmunds PJ, Fan TY (2008) Effect of temperature on the settlement choice and photophysiology of larvae from the reef coral Stylophora pistillata. Biol Bull 215:135–142

    Article  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) The barcode of life data system. Mol Ecol Notes 7:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricardo GF, Jones RJ, Nordborg M, Negri AP (2017) Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. Sci Total Environ 609:277–288

    Article  CAS  PubMed  Google Scholar 

  • Richmond RH (1997) Reproduction and recruitment in corals: critical links in the persistence of reefs. Life and death of coral reefs. Chapman & Hall, New York, pp 175–197

  • Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203

    Article  Google Scholar 

  • Richmond RH, Tisthammer KH, Spies NP (2018) The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front Mar Sci 5:1–9

    Article  Google Scholar 

  • Rinkevich B (2005) What do we know about Eilat (Red Sea) reef degradation? A critical examination of the published literature. J Exp Mar Bio Ecol 327:183–200

    Article  Google Scholar 

  • Rinkevich B (2008) Biodiversity and active conservation of Eilat reef: past and future considerations. In: Por FD (ed) Aqaba-Eilat, the improbable Gulf: environment, biodiversity and preservation. Hebrew University Magnes Press, Jerusalem, pp 299–319

    Google Scholar 

  • Rinkevich B (2014) Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr Opin Environ Sustain 7:28–36

    Article  Google Scholar 

  • Ritson-Williams R, Arnold S, Fogarty N, Steneck RS, Vermeij M, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci 38:437–457

    Article  Google Scholar 

  • Ritson-Williams R, Ross C, Paul VJ (2016) Elevated temperature and allelopathy impact coral recruitment. PLoS One 11:e0166581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogers A, Harborne AR, Brown CJ, Bozec Y-M, Castro C, Chollett I, Hock K, Knowland CA, Marshell A, Ortiz JC, Razak T, Roff G, Samper-Villarreal J, Saunders MI, Wolff NH, Mumby PJ (2015) Anticipative management for coral reef ecosystem services in the 21st century. Glob Chang Biol 21:504–514

    Article  PubMed  Google Scholar 

  • Rosenberg Y, Doniger T, Levy O (2019) Sustainability of coral reefs are affected by ecological light pollution in the Gulf of Aqaba/Eilat. Commun Biol 2:1–9

    Article  Google Scholar 

  • Salinas-de-León P, Costales-Carrera A, Zeljkovic S, Smith DJ, Bell JJ (2011) Scleractinian settlement patterns to natural cleared reef substrata and artificial settlement panels on an Indonesian coral reef. Estuar Coast Shelf Sci 93:80–85

    Article  Google Scholar 

  • Santesmasses D (2018) Tools for extracting data from a tree structure, and plot it as adjacency diagrams (sunburst and icicle). Version (0.0.10)

  • Sawall Y, Al-Sofyani A (2015) Biology of Red Sea corals: metabolism, reproduction, acclimatization, and adaptation. In: Rasul N, Stewart I (eds) The Red Sea. Springer, Berlin, Heidelberg, pp 487–509

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafir S, Gur O, Rinkevich B (2008) A Drupella cornus outbreak in the northern Gulf of Eilat and changes in coral prey. Coral Reefs 27:379

    Article  Google Scholar 

  • Shaked Y, Genin A (2017) The Israel’s National Monitoring Programm (NMP) of the Gulf of Eilat, p 209. https://iui-eilat.huji.ac.il/Research/NMPAbout.aspx

  • Shefy D, Shashar N, Rinkevich B (2018) The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Mar Biol 165:27

    Article  Google Scholar 

  • Shlesinger T, Loya Y (2016) Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs 35:1357–1368

    Article  Google Scholar 

  • Shlesinger T, Loya Y (2019) Breakdown in spawning synchrony: a silent threat to coral persistence. Science (80-) 365:1002–1007

    Article  CAS  Google Scholar 

  • Sola E, Marques da Silva I, Glassom D (2015) Spatio-temporal patterns of coral recruitment at Vamizi Island, Quirimbas Archipelago, Mozambique. African J Mar Sci 37:557–565

    Article  Google Scholar 

  • Sully S, Burkepile DE, Donovan MK, Hodgson G, van Woesik R (2019) A global analysis of coral bleaching over the past two decades. Nat Commun 10:1–5

    Article  CAS  Google Scholar 

  • Warner RR, Chesson PL (1985) Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am Nat 125:769–787

    Article  Google Scholar 

  • Webster NS, Smith LD, Heyward AJ, Watts EM, Webb RI, Blackall LL, Negri P, Watts JEM, Negri AP (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70:1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson C (2002) Status of Coral Reefs of the World. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, p 296

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the Inter University Institute for Marine Sciences in Eilat, to I.M. Ashkenazi and the Guttman’s laboratory (National Center for Mariculture, Eilat) for hospitality and logistical support and the Nature and Parks Authority, Israel, for the permits. The study was supported by the AID-MERC (M33-001), by the Israeli-French high council for scientific & technological research program (Maïmonide-Israel) and by the North American Friends of IOLR (NAF/IOLR). G.G. was supported by a fellowship from BGU- Eilat Campus.

Author information

Authors and Affiliations

Authors

Contributions

BR, MY and GG developed the research project. GG, MY and DS conducted the field work. GG and MY performed the analysis. GG and BR wrote the manuscript. NS read and improved the manuscript.

Corresponding author

Correspondence to Baruch Rinkevich.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrini, G., Yerushalmy, M., Shefy, D. et al. Apparent recruitment failure for the vast majority of coral species at Eilat, Red Sea. Coral Reefs 39, 1715–1726 (2020). https://doi.org/10.1007/s00338-020-01998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01998-4

Keywords

Navigation