Skip to main content

Advertisement

Log in

Brain functional network modeling and analysis based on fMRI: a systematic review

  • Review Paper
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In recent years, the number of patients with neurodegenerative diseases (i.e., Alzheimer’s disease, Parkinson’s disease, mild cognitive impairment) and mental disorders (i.e., depression, anxiety and schizophrenia) have increased dramatically. Researchers have found that complex network analysis can reveal the topology of brain functional networks, such as small-world, scale-free, etc. In the study of brain diseases, it has been found that these topologies have undergoed abnormal changes in different degrees. Therefore, the research of brain functional networks can not only provide a new perspective for understanding the pathological mechanism of neurological and psychiatric diseases, but also provide assistance for the early diagnosis. Focusing on the study of human brain functional networks, this paper reviews the research results in recent years. First, this paper introduces the background of the study of brain functional networks under complex network theory and the important role of topological properties in the study of brain diseases. Second, the paper describes how to construct a brain functional network using neural image data. Third, the common methods of functional network analysis, including network structure analysis and disease classification, are introduced. Fourth, the role of brain functional networks in pathological study, analysis and diagnosis of brain functional diseases is studied. Finally, the paper summarizes the existing studies of brain functional networks and points out the problems and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Not applicable.

Abbreviations

AAL:

Anatomical automatic labeling

BOLD:

Blood oxygenation level dependent

CAD:

Computer aided diagnosis

EEG:

Electroencephalogram

fMRI:

Functional magnetic resonance imaging

ICA:

Independent component analysis

MEG:

Magnetoencephalography

PCA:

Principal component analysis

ROI:

Region of interest

SVD:

Singular value decomposition

SVM:

Support vector machine

SPM:

statistical parametric mapping toolkit

TSCI:

Traumatic complete spinal cord injury.

WHO:

World Health Organization

References

  • Adkinson JA, Karumuri B, Hutson TN, Liu R, Alamoudi O, Vlachos I, Iasemidis L (2019) Connectivity and centrality characteristics of the epileptogenic focus using directed network analysis. IEEE Trans Neural Syst Rehabil Eng 27(1):22–30

    PubMed  Google Scholar 

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676

    PubMed  Google Scholar 

  • Atluri G, Iii M, Lim KO, Kumar V (2016) The brain-network paradigm: using functional imaging data to study how the brain works. Computer 49(10):65–71

    Google Scholar 

  • Bansal K, Nakuci J, Muldoon SF (2018) Personalized brain network models for assessing structure function relationships. Curr Opin Neurobiol 52:42–47

    CAS  PubMed  Google Scholar 

  • Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann CF (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 71(10):4734–4739

    Google Scholar 

  • Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14(6):277–290

    PubMed  Google Scholar 

  • Buckner RL, Andrewshanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124(1):1–38

    PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(13):336–349

    CAS  PubMed  Google Scholar 

  • Cao B, Kong X, Yu PS (2015a) A review of heterogeneous data mining for brain disorder identification. Brain Inf 2(4):253–264

    Google Scholar 

  • Cao B, Kong X, Zhang J, Yu PS, Ragin AB (2015b) Identifying hiv-induced subgraph patterns in brain networks with side information. Brain Inf 2(4):211–223

    Google Scholar 

  • Cecchi GA, Rao AR, Centeno MV, Baliki M, Apkarian AV, Chialvo DR (2007) Identifying directed links in large scale functional networks: application to brain fMRI. Bmc Cell Biol 8(Suppl(1)13):S5

    PubMed  PubMed Central  Google Scholar 

  • Ciric R, Nomi JS, Uddin LQ, Satpute AB (2017) Contextual connectivity: a framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks. Sci Rep7(6537)

  • Craddock RC, Jbabdi S, Yan CG, Vogelstein J, Castellanos FX, Martino AD, Kelly C, Heberlein K, Colcombe S, Milham MP (2013) Imaging human connectomes at the macroscale. Nat Methods 10(6):524–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickten H, Porz S, Elger CE, Lehnertz K (2016) Weighted and directed interactions in evolving large-scale epileptic brain networks. Sci Rep 6:34824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A (2017) Erratum: Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38

    CAS  PubMed  Google Scholar 

  • Du Y, Lin D, Yu Q, Sui J, Chen J, Rachakonda S, Adali T, Calhoun VD (2017) Comparison of iva and gig-ica in brain functional network estimation using fMRI data. Front Neurosci 267(11):1–18

    Google Scholar 

  • Eickhoff SB, EStephan K, Mohlberg H, Grefkes C, Finkade GR, Amunts K, Zilles K, (2005) A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    PubMed  Google Scholar 

  • Eickhoff SB, Nichols TE, Horn JDV, Turner JA (2016) Sharing the wealth: neuroimaging data repositories. Neuroimage 124(Pt B):1065–1068

    PubMed  Google Scholar 

  • Enzhong LI, Gao JH, Guangming LU, Peng YH, Dong ED (2015) Functional neuroimaging and its applications to critical brain diseases. Sci China Earth Sci 45(3):237–246

    Google Scholar 

  • Fei F, Jie B, Zhang D (2014) Frequent and discriminative subnetwork mining for mild cognitive impairment classification. Brain Connect 4(5):347–360

    PubMed  PubMed Central  Google Scholar 

  • Figueroa CA, Cabral J, Mocking RJT, Rapuano KM, van Hartevelt TJ, Deco G, Expert P, Schene AH, Kringelbach ML, Ruh HG (2019) Altered ability to access a clinically relevant control network in patients remitted from major depressive disorder. Hum Brain Mapp 40(9):2771–2786

    PubMed  PubMed Central  Google Scholar 

  • Griffa A, Ricaud B, Benzi K, Bresson X, Daducci A, Vandergheynst P, Thiran JP, Hagmann P (2017) Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems. Neuroimage 155:490–502

    PubMed  Google Scholar 

  • Guo H, Cao X, Liu Z, Li H, Chen J, Zhang K (2013) Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. NeuroReport 23(17):1006–1011

    Google Scholar 

  • Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69(2):387–396

    CAS  PubMed  Google Scholar 

  • Hojjati SH, Ebrahimzadeh A, Khazaee A, Babajaniferemi A (2017) Predicting conversion from mci to ad using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods 282:69–80

    PubMed  Google Scholar 

  • Huang S, Li J, Ye J, Fleisher A, Chen K, Wu T, Reiman E (2011) Brain effective connectivity modeling for Alzheimer’s disease by sparse gaussian bayesian network. In: International conference on knowledge discovery & data mining (KDD), pp 931–939

  • Ide JS, CsR Li (2018) Time scale properties of task and resting-state functional connectivity: detrended partial cross correlation analysis. Neuroimage 173:240–248

    PubMed  Google Scholar 

  • Ide JS, Zhang S, CsR Li (2014) Bayesian network models in brain functional connectivity analysis. Int J Approx Reason 55(1):23–35

    Google Scholar 

  • Jiang T, Yong H, Zang Y, Weng X (2010) Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp 22(1):63–71

    Google Scholar 

  • Jie B, Zhang DQ (2016) The novel graph kernel for brain networks with application to mci classification. Chin J Comput 39(8):1667–1680

    Google Scholar 

  • John M, Ikuta T, Ferbinteanu J (2017) Graph analysis of structural brain networks in Alzheimer’s disease: beyond small world properties. Brain Struct Func 222(2):1–20

    Google Scholar 

  • Katwal SB, Gore JC, Marois R, Rogers BP (2013) Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps. IEEE Trans Biomed Eng 60(9):2472–2483

    PubMed  PubMed Central  Google Scholar 

  • Kaushal M, Oni-Orisan A, Chen G, Li W, Leschke J, Ward BD, Kalinosky BT, Budde MD, Schmit BD, Li SJ (2016) Evaluation of whole-brain resting-state functional connectivity in spinal cord injury—a large-scale network analysis using network based statistic. J Neurotrauma 34(6):1278–1282

    Google Scholar 

  • Khajehpour H, Mohagheghian F, Ekhtiari H, Makkiabadi B, Harirchian MH (2019) Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state eeg. Cogn Neurodyn 13(6):519–530

    PubMed  PubMed Central  Google Scholar 

  • Khalili NM, Rombouts SA, van Osch MJ, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP (2017) Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: a review of state-of-the-art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 38(4):2276–2325

    Google Scholar 

  • Khazaee A, Ebrahimzadeh A, Babajani-Feremi A (2017) Classification of patients with mci and ad from healthy controls using directed graph measures of resting-state fMRI. Behav Brain Res 322(Pt B):339–350

    PubMed  Google Scholar 

  • Kong X, Yu PS (2010) Semi-supervised feature selection for graph classification. In: 16th ACM sigkdd international conference on knowledge discovery and data mining, pp 793–802

  • Kong X, Yu PS (2014) Brain network analysis: a data mining perspective. ACM SIGKDD Explor Newsl 15(2):30–38

    Google Scholar 

  • Kourosh JK, Kamran P, Fatemeh H, Bruce R (2018) The effect of region of interest size on the repeatability of quantitative brain imaging biomarkers. IEEE Trans Biomed Eng 66(3):864–872

    Google Scholar 

  • Kucyi A, Hove MJ, Esterman M, Hutchison RM, Valera EM (2016) Dynamic brain network correlates of spontaneous fluctuations in attention. Cereb Cortex 27(3):1831–1840

    PubMed Central  Google Scholar 

  • Lefort-Besnard J, Bassett DS, Smallwood J, Margulies DS, Bzdok D (2018) Different shades of default mode disturbance in schizophrenia: subnodal covariance estimation in structure and function. Hum Brain Mapp 39(2):644–661

    PubMed  Google Scholar 

  • Li K, Guo L, Nie J, Li G, Liu T (2009) Review of methods for functional brain connectivity detection using fMRI. Comput Med Imaging Graph Off J Comput Medi Imaging Soc 33(2):131–139

    Google Scholar 

  • Li W, Yang C, Shi F, Wang Q, Wu S, Lu W, Li S, Nie Y, Zhang X (2018) Alterations in normal aging revealed by cortical brain network constructed using ibaspm. Brain Topogr 31(9):1–14

    Google Scholar 

  • Li Y, Hou C, Yao L, Zhang C, Zheng H, Zhang J, Long Z (2019) Disparity level identification using the voxel-wise gabor model of fMRI data. Hum Brain Mapp 40(5):2596–2610

    PubMed  PubMed Central  Google Scholar 

  • Liang X, Wang JH, He Y (2010) Human connectome: structural and functional brain networks. Chin Sci Bull 55(16):1565–1583

    Google Scholar 

  • Liang X, Hsu LM, Lu H, Sumiyoshi A, He Y, Yang Y (2018) The rich-club organization in rat functional brain network to balance between communication cost and efficiency. Cereb Cortex 28(3):924–935

    PubMed  Google Scholar 

  • Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G, Chen H (2011) Small-world directed networks in the human brain: multivariate granger causality analysis of resting-state fMRI. Neuroimage 54(4):2683–2694

    PubMed  Google Scholar 

  • Liao W, Qiu C, Gentili C, Walter M, Pan Z, Ding J, Zhang W, Gong Q, Chen H (2012) Altered effective connectivity network of the amygdala in social anxiety disorder: a resting-state fMRI study. PLoS ONE 5(12):e15238

    Google Scholar 

  • Lopes R, Delmaire C, Defebvre L, Moonen AJ, Duits AA, Hofman P, Leentjens AFG, Dujardin K (2017) Cognitive phenotypes in Parkinson’s disease differ in terms of brain-network organization and connectivity. Hum Brain Mapp 38(3):1604–1621

    PubMed  Google Scholar 

  • Lord LD, Expert P, Huckins JF, Turkheimer FE (2013) Cerebral energy metabolism and the brain’s functional network architecture: an integrative review. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 33(9):1347–1354

    Google Scholar 

  • Lukic AS, Wernick MN, Strother SC (1999) An evaluation of methods for detecting brain activations from pet or fMRI images. Nucl Sci Symp 2:1119–1123

    Google Scholar 

  • Ma G, He L, Lu CT, Yu PS, Shen L, Ragin AB (2016) Spatio-temporal tensor analysis for whole-brain fMRI classification. In: Proceedings of the 2016 SIAM international conference on data mining (SDM), pp 819–827

  • Margulies DS, Böttger J, Long X, Lv Y, Kelly C, Schäfer A, Goldhahn D, Abbushi A, Milham MP, Lohmann G (2010) Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. Magn Reson Mater Phys Biol Med 23(5–6):289–307

    Google Scholar 

  • Martijn H, Sporns O (2013) Network hubs in the human brain. Trends Cognit Sci 17(12):683–696

    Google Scholar 

  • Mp VDH, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534

    Google Scholar 

  • Mwansisya TE, Hu A, Li Y, Chen X, Wu G, Huang X, Lv D, Li Z, Liu C, Xue Z (2017) Task and resting-state fMRI studies in first-episode schizophrenia: a systematic review. Schizophr Res 189:9–18

    PubMed  Google Scholar 

  • Patterson C (2018) World Alzheimer report 2018: the state of the art of dementia research: new frontiers. Alzheimer’s Disease International, London

    Google Scholar 

  • Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45(1):S199–S209

    PubMed  Google Scholar 

  • Pfurtscheller G, da Silva Lopes FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    CAS  PubMed  Google Scholar 

  • Pillai AS, Jirsa VK (2017) Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior. Neuron 94(5):1010–1026

    CAS  PubMed  Google Scholar 

  • Power JD, Fair DA, Schlaggar BL, Petersen SE (2010) The development of human functional brain networks. Neuron 67(5):735–748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin FM, Schlaggar BL (2011) Functional network organization of the human brain. Neuron 72(4):665–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M (2016) World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. Alzheimer’s Disease International (ADI), London

    Google Scholar 

  • Pruttiakaravanich A, Songsiri J (2016) A review on dependence measures in exploring brain networks from fMRI data. Eng J 20:208–233

    Google Scholar 

  • Pu J, Wang J, Yu W, Shen Z, Lv Q, Zeljic K, Zhang C, Sun B, Liu G, Wang Z (2015) Discriminative structured feature engineering for macroscale brain connectomes. IEEE Trans Med Imaging 34(11):2333

    PubMed  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342

    PubMed  Google Scholar 

  • Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, Mintun MA (2010) Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 67(6):584–587

    CAS  PubMed  Google Scholar 

  • Shi L, Sun J, Ren Z, Chen Q, Wei D, Yang W, Qiu J (2018) Large-scale brain network connectivity underlying creativity in resting-state and task fMRI: Cooperation between default network and frontal-parietal network. Biol Psychol 135:102–111

    PubMed  Google Scholar 

  • Thompson WH, Fransson P (2018) A common framework for the problem of deriving estimates of dynamic functional brain connectivity. Neuroimage 172:896–902

    PubMed  Google Scholar 

  • Tian L (2010) Analysis of complex brain networks based on graph theory. Beijing Biomed Eng 29:96–100

    Google Scholar 

  • Tomše P, Jensterle L, Grmek M, Zaletel K, Pirtošek Z, Dhawan V, Peng S, Eidelberg D, Ma Y, Trošt M, (2017) Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new european sample. Neuroradiology 59(5):1–9

    Google Scholar 

  • Vergara VM, Mayer A, Damaraju E, Kiehl K, Calhoun VD (2017) Detection of mild traumatic brain injury by machine learning classification using resting state functional network connectivity and fractional anisotropy. J Neurotrauma 34(5):45–53

    Google Scholar 

  • Wang C, Sun C, Xi Z, Wang Y, Qi H, Feng H, Xin Z, Ying Z, Wan B, Du J (2015) The brain network research of poststroke depression based on partial directed coherence(pdc). Chin J Biomed Eng 34(1):385–391

    Google Scholar 

  • Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 4(16):1–14

    CAS  Google Scholar 

  • Wang X, Lin Q, Xia M, He Y (2018a) Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification. Hum Brain Mapp 39(4):1647–1663

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang R, Zhu Y (2017) Optimal path-finding through mental exploration based on neural energy field gradients. Cogn Neurodyn 11(1):99–111

    PubMed  Google Scholar 

  • Wang Z, Wang R (2014) Energy distribution property and energy coding of a structural neural network. Front Comput Neurosci. https://doi.org/10.3389/fncom.2014.00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Xin J, Wang X, Wang Z, Zhao Y, Qian W (2018b) Voxelwise-based brain function network using multi-graph model. Sci Rep 8(1):17754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei DT, Meng J, Ya Dan LI, Zhang QL, Qiu J (2015) Application of big neuroimaging data from individual difafferences in psychological research. Chin Sci Bull 60(11):976–985

    Google Scholar 

  • Xu H, Su J, Qin J (2018) Impact of global signal regression on characterizing dynamic functional connectivity and brain states. Neuroimage 173:127–145

    PubMed  Google Scholar 

  • Yao D, Zhang Y, Liu T, Xu P, Gong D, Lu J, Xia Y, Luo C, Guo D, Dong L, Lai Y, Chen K, Li J (2020) Bacomics: a comprehensive cross area originating in the studies of various brain-apparatus conversations. Cogn Neurodyn. https://doi.org/10.1007/s11571-020-09577-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Hu B, Xie Y, Philip M, Zheng J (2015) A review of structural and functional brain networks: small world and atlas. Brain Inf 2(1):45–52

    Google Scholar 

  • Yoldemir B, Ng B, Abugharbieh R (2016) Stable overlapping replicator dynamics for brain community detection. IEEE Trans Med Imaging 35(2):529–538

    PubMed  Google Scholar 

  • Zhao S, Han J, Lv J, Jiang X, Hu X, Zhao Y, Ge B, Guo L, Liu T (2015) Supervised dictionary learning for inferring concurrent brain networks. IEEE Trans Med Imaging 34(10):2036–2045

    PubMed  Google Scholar 

  • Zhou Z, Chen Y, Ding M, Wright P, Lu Z, Liu Y (2010) Analyzing brain networks with pca and conditional granger causality. Hum Brain Mapp 30(7):2197–2206

    Google Scholar 

  • Zhu Z, Wang R, Zhu F (2018) The energy coding of a structural neural network based on the Hodgkin–Huxley model. Front Neurosc. https://doi.org/10.3389/fnins.2018.00122

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (61472069, 61402089, U1401256, 61672146), and the Fundamental Research Funds for the Central Universities (N2019007, N180101028, N180408019), and the China Postdoctoral Science Foundation (2019T120216 and 2018M641705), and the CETC Joint Fund, and the Recruitment Program of Global Experts under Grant (01270021814101/022).

Author information

Authors and Affiliations

Authors

Contributions

ZYW and JCX collected the background information. ZYW, JCX and ZQW analyzed and compared the current research situation. ZW, JX had the major responsibility for preparing the paper, ZYW, ZQW and YDY wrote part of the paper. JCX, YZ and WQ. supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junchang Xin.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xin, J., Wang, Z. et al. Brain functional network modeling and analysis based on fMRI: a systematic review. Cogn Neurodyn 15, 389–403 (2021). https://doi.org/10.1007/s11571-020-09630-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09630-5

Keywords

Navigation