Skip to main content
Log in

Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Ischaemic stroke is an acute interruption of the blood supply to the brain, which leads to rapid irreversible damage to nerve tissue. Ischaemic stroke is accompanied by the development of neuroinflammation and neurodegeneration observed around the affected brain area. Heat shock protein 70 (Hsp70) facilitates cell survival under a variety of different stress conditions. Hsp70 may be secreted from cells and exhibits cytoprotective activity. This activity most likely occurs by decreasing the levels of several proinflammatory cytokines through interaction with a few receptors specific to the innate immune system. Herein, we demonstrated that intranasal administration of recombinant human Hsp70 shows a significant twofold decrease in the volume of local ischaemia induced by photothrombosis in the mouse prefrontal brain cortex. Our results revealed that intranasal injections of recombinant Hsp70 decreased the apoptosis level in the ischaemic penumbra, stimulated axonogenesis and increased the number of neurons producing synaptophysin. Similarly, in the isolated crayfish stretch receptor, consisting of a single sensory neuron surrounded by the glial envelope, exogenous Hsp70 significantly decreased photoinduced apoptosis and necrosis of glial cells. The obtained data enable one to consider human recombinant Hsp70 as a promising compound that could be translated from the bench into clinical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PTS:

Photothrombotic stroke

Hsp70:

Heat shock protein 70

SYP:

Synaptophysin

References

  • Aigner L, Caroni P (1995) Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J Cell Biol 128(4):647–660

    CAS  PubMed  Google Scholar 

  • Aneja R, Odoms K, Dunsmore K, Shanley TP, Wong HR (2006) Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol 177:7184–7192

    CAS  PubMed  Google Scholar 

  • Bobkova NV, Garbuz DG, Nesterova I, Medvinskaya N, Samokhin A, Alexandrova I, Yashin V, Karpov V, Kukharsky MS, Ninkina NN, Smirnov AA, Nudler E, Evgen’ev M (2014) Therapeutic effect of exogenous Hsp70 in mouse models of Alzheimer’s disease. J Alzheimers Dis 38(2):425–435

    PubMed  Google Scholar 

  • Bobkova NV, Evgen’ev ME, Garbuz DG, Kulikov AM, Morozov A, Samokhin A, Velmeshev D, Medvinskaya N, Nesterova I, Pollock A, Nudler E (2015) Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. PNAS USA 112(52):16006–16011

    CAS  PubMed  Google Scholar 

  • Borges TJ, Lopes RL, Pinho NG, Machado FD, Souza AP, Bonorino C (2013) Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10 driven down-regulation of C/EBPβ and C/EBPδ. Int J Hyperth 29:455–463

    CAS  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581:3689–3694

    CAS  PubMed  Google Scholar 

  • Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S (2005) Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol 193(2):291–311

    CAS  PubMed  Google Scholar 

  • Demyanenko S, Uzdensky A (2017) Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. MolNeurobiol. 54(9):6839–6856. https://doi.org/10.1007/s12035-016-0191-x

    Article  CAS  Google Scholar 

  • Demyanenko SV, Panchenko SN, Uzdensky AB (2015) Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochemistry (Mosc) 80(6):790–799. https://doi.org/10.1134/S0006297915060152

    Article  CAS  Google Scholar 

  • Demyanenko S, Berezhnaya E, Neginskaya M, Rodkin S, Dzreyan V, Pitinova M (2019) Сlass II histone deacetylases in the post-stroke recovery period-expression, cellular, and subcellular localization-promising targets for neuroprotection. J Cell Biochem 120(12):19590–19609. https://doi.org/10.1002/jcb.29266

    Article  CAS  PubMed  Google Scholar 

  • Doeppner TR, Kaltwasser B, Fengyan J, Hermann DM, Bähr M (2013) TAT-Hsp70 induces neuroprotection against stroke via anti-inflammatory actions providing appropriate cellular microenvironment for transplantation of neural precursor cells. J Cereb Blood Flow Metab 33(11):1778–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evgen’ev MB, Garbuz DG, Zatsepina OG. (2014) Heat Shock Proteins and whole body adaptation to extreme environments. Springer. XVII: 218

  • Evgen’ev MB, Krasnov GS, Nesterova IV, Garbuz DG, Karpov VL, Morozov AV, Snezhkina A, Samokhin A, SergeevA BNV (2017) MolecularmechanismsunderlyingneuroprotectiveeffectofeHsp70 intransgenic 5XFADmice. J Alzheimer’s Desease 59(4):1415–1426

    Google Scholar 

  • Fang S, Yan B, Wang D, Bi X, Zhang Y, He J, Xu H, Yang Y, Kong J, Wu J, Li XM (2010) Chronic effects of venlafaxine on synaptophysin and neuronal cell adhesion molecule in the hippocampus of cerebral ischemic mice. Biochem Cell Biol 88(4):655–663

    CAS  PubMed  Google Scholar 

  • Ferrer I, Planas AM (2003 Apr) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62(4):329–339

    PubMed  Google Scholar 

  • Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes AP, Santos do Carmo MR, Fernandes FD, de Araújo PR, de Andrade GM (2016) Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 297:91–103. https://doi.org/10.1016/j.bbr.2015.09.029

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 1, 3th edn. Elsevier Academic Press, Amsterdam, p 325

  • Gabai VL, Meriin AB, Yaglom JA, Volloch V, Sherman MY (1998) Role of HSP70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438:1–4

    CAS  PubMed  Google Scholar 

  • Ghosh AK, Sinha D, Mukherjee S, Biswas R, Biswas T (2015) LPS stimulates and Hsp70 down-regulates TLR4 to orchestrate differential cytokine response of culture-differentiated innate memory CD8(+) T cells. Cytokine. 73:44–52

    CAS  PubMed  Google Scholar 

  • Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B, Yenari MA (2004) Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol 207(Pt 18):3213–3220

    CAS  PubMed  Google Scholar 

  • Gorup D, Bohaček I, Miličević T, Pochet R, Mitrečić D, Križ J, Gajović S (2015) Increased expression and colocalization of GAP43 and CASP3 after brain ischemic lesion in mouse. Neurosci Lett 597:176–182. https://doi.org/10.1016/j.neulet.2015.04.042

    Article  CAS  PubMed  Google Scholar 

  • Gurskiy YG, Garbuz DG, Soshnikova NV, Krasnov AN, Deikin A, Lazarev VF, Sverchinskyi D, Margulis BA, Zatsepina OG, Karpov VL, Belzhelarskaya SN, Feoktistova E, Georgieva SG, Evgen’ev MB (2016) The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice. Cell Stress Chaperones 21(6):1055–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914:66–73

    CAS  PubMed  Google Scholar 

  • Hsu JH, Yang RC, Lin SJ, Liou SF, Dai ZK, Yeh JL, Wu JR (2014) Exogenous heat shock cognate protein 70 pretreatment attenuates cardiac and hepatic dysfunction with associated anti-inflammatory responses in experimental septic shock. Shock. 42:540–547

    CAS  PubMed  Google Scholar 

  • James SL, Castle CD, Dingels ZV, et al. (2020) Global injury morbidity and mortality from 1990 to 2017: results from the Global Burden of Disease Study 2017. Inj Prev injuryprev-2019-043494. doi:https://doi.org/10.1136/injuryprev-2019-043494

  • Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):142. https://doi.org/10.1186/s12974-019-1516-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Karsy M, Brock A, Guan J, Taussky P, Kalani MY, Park MS (2017) Neuroprotective strategies and the underlying molecular basis of cerebrovascular stroke. Neurosurg Focus 42:E3. https://doi.org/10.3171/2017.1.FOCUS16522

    Article  PubMed  Google Scholar 

  • Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38(7):1167–1186. https://doi.org/10.1007/s10072-017-2938-1

    Article  PubMed  Google Scholar 

  • Kim JY, Han Y, Lee JE, Yenari MA (2018) The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 22(3):191–199. https://doi.org/10.1080/14728222.2018.1439477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS (2001) Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke. 32(12):2905–2912

    CAS  PubMed  Google Scholar 

  • Lee JK, Park MS, Kim YS, Moon KS, Joo SP, Kim TS, Kim JH, Kim SH. (2007) Photochemically induced cerebral ischemia in a mouse model. Surg Neurol 67(6):620–625. https://doi.org/10.1016/j.surneu.2006.08.077

  • Lee K, Jeong J, Yoo C (2013) Positive feedback regulation of heat shock protein 70 (Hsp70) is mediated through toll-like receptor 4-PI3K/Akt-glycogen synthase kinase-3β pathway. Exp Cell Res 319(1):88–95. https://doi.org/10.1016/j.yexcr.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  • Li GL, Farooque M, Holtz A, Olsson Y (1996) Increased expression of growth-associated protein 43 immunoreactivity in axons following compression trauma to rat spinal cord. ActaNeuropathol 92(1):19–26

    CAS  Google Scholar 

  • Li Y, Jiang N, Powers C, Chopp M (1998) Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Stroke. 29(9):1972–1980 discussion 1980-1

    CAS  PubMed  Google Scholar 

  • Liu W, Xue X, Xia J, Liu J, Qi Z (2018) Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins. J Affect Disord 227:126–135. https://doi.org/10.1016/j.jad.2017.10.019

    Article  PubMed  Google Scholar 

  • Lu R, Tan M, Wang H, Xie A, Yu J, Tan L (2014) Heat shock protein 70 in Alzheimer’s disease. Biomed Res Int 2014:435203

    PubMed  PubMed Central  Google Scholar 

  • Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J (2019) Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 162:132–146. https://doi.org/10.1016/j.ejmech.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J (2005) Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25(7):899–910

    CAS  PubMed  Google Scholar 

  • Miyake K, Yamamoto W, Tadokoro M, Takagi N, Sasakawa K, Nitta A, Furukawa S, Takeo S (2002) Alterations in hippocampal GAP-43, BDNF, and L1 following sustained cerebral ischemia. Brain Res 935(1–2):24–31

    CAS  PubMed  Google Scholar 

  • Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron. 67(2):181–198. https://doi.org/10.1016/j.neuron.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL, American Heart Association Stroke Council (2018) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 49(3):e46–e110

    PubMed  Google Scholar 

  • Puyal J, Ginet V, Clarke PG (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. ProgNeurobiol. 105:24–48. https://doi.org/10.1016/j.pneurobio.2013.03.002

    Article  Google Scholar 

  • Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER (2017) Apoptosis and acute brain ischemia in ischemic stroke. CurrVascPharmacol. 15(2):115–122. https://doi.org/10.2174/1570161115666161104095522

    Article  CAS  Google Scholar 

  • Rajah GB, Ding Y (2017) Experimental neuroprotection in ischemic stroke: a concise review. Neurosurg Focus 42(4):E2. https://doi.org/10.3171/2017.1.FOCUS16497

    Article  PubMed  Google Scholar 

  • Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 47(6):782–791

    CAS  PubMed  Google Scholar 

  • Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM, Graves J, Tytell M, Milligan CE (2005) Extracellular heat shock protein 70: critical component for motoneuron survival. J Neurosci 25:9735–9745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodkin S, Khaitin A, Pitinova M, Dzreyan V, Guzenko V, Rudkovskii M, Sharifulina S, Uzdensky A (2020) The localization of p53 in the crayfish mechanoreceptor neurons and its role in axotomy-induced death of satellite glial cells remote from the axon transection site. J Mol Neurosci 70(4):532–541. https://doi.org/10.1007/s12031-019-01453-2

    Article  CAS  PubMed  Google Scholar 

  • Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Murashev A, Ostrov V, Boris M, Evgenev M, Vinokurov M (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann New-York Acad Sci 1197:94–107

    CAS  Google Scholar 

  • Sharp FR, Zhan X, Liu DZ (2013) Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res 4(6):685–692. https://doi.org/10.1007/s12975-013-0271-4

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov MA, Nikolaev BP, Yakovleva LY, Dobrodumov AV, Dayneko AS, Shmonin AA, Vlasov TD, Melnikova EV, Vilisov AD, Guzhova IV, Ischenko AM, Mikhrina AL, Galibin OV, Yakovenko IV, Margulis BA (2014) Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats. Drug Des DevelTher 8:639–650

    CAS  Google Scholar 

  • Smith TD, Adams MM, Gallagher M, Morrison JH, Rapp PR (2000) Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 20(17):6587–6593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    CAS  PubMed  Google Scholar 

  • Stroemer RP, Kent TA, Hulsebosch CE (1993) Acute increase in expression of growth associated protein GAP-43 following cortical ischemia in rat. Neurosci Lett 162(1–2):51–54

    CAS  PubMed  Google Scholar 

  • Sun Y, Ouyang YB, Xu L, Chow AM, Anderson R, Hecker JG, Giffard RG (2006) The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab 26(7):937–950

    CAS  PubMed  Google Scholar 

  • Troyanova NI, Shevchenko MA, Boyko AA, Mirzoyev RR, Pertseva MA, Kovalenko EI, Sapozhnikov AM (2015) Modulating effect of extracellular HSP70 on generation of reactive oxygen species in populations of phagocytes. Bioorg.Khim. 41(3):305–315 Russian

    CAS  PubMed  Google Scholar 

  • Tsuchiya D, Hong S, Matsumori Y, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR (2003) Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery 53(5):1179–1187 discussion 1187–8

    PubMed  Google Scholar 

  • Tytell M, Davis A, Giles J, Snider L, Xiao R, Dozier S, Presley T, Kavanagh K (2018) Alfalfa-derived HSP70 administered intranasally improves insulin sensitivity in mice. Cell Stress Chaperones 23(2):189–194. https://doi.org/10.1007/s12192-017-0835-4

    Article  PubMed  Google Scholar 

  • Uzdensky AB (2018) Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res 9(5):437–451. https://doi.org/10.1007/s12975-017-0593-8

    Article  PubMed  Google Scholar 

  • Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke:expression of pro- and antiapoptotic proteins. Apoptosis. 24(9–10):687–702. https://doi.org/10.1007/s10495-019-01556-6

    Article  CAS  PubMed  Google Scholar 

  • Venkat P, Shen Y, Chopp M, Chen J (2018) Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 134(Pt B):310–322. https://doi.org/10.1016/j.neuropharm.2017.08.036

    Article  CAS  PubMed  Google Scholar 

  • Vinokurov M, Ostrov V, Yurinskaya M, Garbuz D, Murashev A, Antonova O, Evgen’ev M (2012) Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress Chaperones 17:89–101

    CAS  PubMed  Google Scholar 

  • Wegele H, Müller L, Buchner J (2004) Hsp70 and Hsp90 – a relay team for protein folding. Rev Physiol Biochem Pharmacol Rev Physiol Biochem Pharmacol 151:1–44

    CAS  PubMed  Google Scholar 

  • Weinstein PR, Hong S, Sharp FR (2004) Molecular identification of the ischemic penumbra. Stroke. 35(11 Suppl 1):2666–2670

    CAS  PubMed  Google Scholar 

  • Wheeler TC, Chin LS, Li Y, Roudabush FL, Li L (2002) Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J Biol Chem 277(12):10273–10282

    CAS  PubMed  Google Scholar 

  • Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG (2005 Aug) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053:74–83

    CAS  PubMed  Google Scholar 

  • Yurinskaya M, Zatsepina OG, Vinokurov MG, Bobkova NV, Garbuz DG, Morozov AV, Kulikova DA, Mitkevich VA, Makarov AA, Funikov SY, Evgen’ev MB (2015) The fate of exogenous human HSP70 introduced into animal cells by different means. Curr Drug Deliv 12(5):524–532

    CAS  PubMed  Google Scholar 

  • Zhan X, Kim C, Sharp FR (2008) Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Res 1234:183–197. https://doi.org/10.1016/j.brainres.2008.07.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan R, Leng X, Liu X, Wang X, Gong J, Yan L, Wang L, Wang Y, Wang X, Qian LJ (2009) Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun 387:229–233

    CAS  PubMed  Google Scholar 

  • Zhan X, Ander BP, Liao IH, Hansen JE, Kim C, Clements D, Weisbart RH, Nishimura RN, Sharp FR (2010) Recombinant Fv-Hsp70 protein mediates neuroprotection after focal cerebral ischemia in rats. Stroke 41(3):538–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Qiu B, Wang J, Yao Y, Wang C, Liu J (2017) Effects of BDNF-transfected BMSCs on neural functional recovery and synaptophysin expression in rats with cerebral infarction. MolNeurobiol. 54(5):3813–3824. https://doi.org/10.1007/s12035-016-9946-7

    Article  CAS  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28(1):53–63

    CAS  PubMed  Google Scholar 

  • Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q (2018) Advances in stroke pharmacology. PharmacolTher 191:23–42. https://doi.org/10.1016/j.pharmthera.2018.05.012

    Article  CAS  Google Scholar 

Download references

Funding

Expression and isolation of human recombinant Hsp70 was performed using funding provided by Russian Science Foundation grant #19-14-00167 (D.G). All studies with two models of experimental stroke were funded by the Ministry of Science and Higher Education of Russian Federation grant #0852-2020-0028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Evgen’ev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyanenko, S., Nikul, V., Rodkin, S. et al. Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke. Cell Stress and Chaperones 26, 103–114 (2021). https://doi.org/10.1007/s12192-020-01159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01159-0

Keywords

Navigation