Skip to main content
Log in

An On-chip Chemiluminescent Immunoassay for Bacterial Detection using in Situ-synthesized Cadmium Sulfide Nanowires with Passivation Layers

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The passivation layers of an in situ-synthesized cadmium sulfide (CdS) nanowire (NW) photosensor were prepared for two reasons: (1) to improve the physical stability of the NW on an interdigitated electrode and (2) to enhance the immobilization efficiency of proteins for the on-chip immunoassay. The passivation layer was estimated to have suitable optical properties, and the photoresponse of photosensor was increased after the formation of passivation layer. The immobilization efficiency of a parylene-H film through covalent bonding was compared with the immobilization of Z-domains through physical adsorption. Finally, on-chip chemiluminescent immunoassay of bacteria was carried out by immobilizing antibodies against Escherichia coli through Z-domains for the orientation control of antibodies. The limit of detection was determined to be less than 104E. coli/mL (n=3), and the sensitivity of bacterial detection was estimated to be 0.339 pA/E. coli/mL (n=3) with a linearity factor (R2) of 0.999. These results showed that the on-chip chemiluminescent immunoassay for bacterial detection could be performed using passivation layer coated CdS NW photosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Blank, T. & Gol’dberg, Y.A. Semiconductor photoelectric converters for the ultraviolet region of the spectrum. Semiconductors 37, 999–1030 (2003).

    Article  CAS  Google Scholar 

  2. Gao, T., Li, Q. & Wang, T. CdS nanobelts as photo-conductors. Appl. Phys. Lett. 86, 173105 (2005).

    Article  Google Scholar 

  3. Hoang, T.B., Titova, L., Jackson, H., Smith, L., Yarrison-Rice, J., Lensch, J. & Lauhon, L.J. Temperature dependent photoluminescence of single CdS nanowires. Appl. Phys. Lett. 89, 123123 (2006).

    Article  Google Scholar 

  4. Jie, J., Zhang, W., Jiang, Y., Meng, X., Li, Y. & Lee, S. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887–1892 (2006).

    Article  CAS  Google Scholar 

  5. Kim, H.-R., An, B.-G., Chang, Y.W., Kang, M.-J., Park, J.-G., Pyun, J.-C., Kim, H.-R., An, B.-G., Chang, Y.W. & Kang, M.-J. Characterization of in-situ synthesized CdS x Se 1 — x ternary alloy nanowire photosensor. J. Korean Ceram. Soc. 56, 308–316 (2019).

    Article  CAS  Google Scholar 

  6. Kwon, G.-H., Kim, T.W., Lee, H.I., Cho, W.C., Kim, H., Kwon, G.-H., Kim, T.W., Lee, H.I., Cho, W.C. & Kim, H. Synthesis of ZrO2 nanorods and their application as membrane materials. J. Korean Ceram. Soc. 56, 541–548 (2019).

    Article  CAS  Google Scholar 

  7. Li, Q., Gao, T. & Wang, T. Optoelectronic characteristics of single CdS nanobelts. Appl. Phys. Lett. 86, 193109 (2005).

    Article  Google Scholar 

  8. Ma, R., Wei, X., Dai, L., Huo, H. & Qin, G. Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18, 205605 (2007).

    Article  Google Scholar 

  9. Shen, G., Cho, J.H., Yoo, J.K., Yi, G.-C. & Lee, C.J. Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. J. Phys. Chem. B 109, 9294–9298 (2005).

    Article  CAS  Google Scholar 

  10. An, B.-G., Chang, Y.W., Kim, H.-R., Lee, G., Kang, M.-J., Park, J.-K. & Pyun, J.-C. Highly sensitive photosensor based on in situ synthesized CdS nanowires. Sens. Actuators, B 221, 884–890 (2015).

    Article  CAS  Google Scholar 

  11. An, B.-G., Kim, H.-R., Kang, M.-J., Park, J.-G., Chang, Y.W. & Pyun, J.-C. Chemiluminescent lateral-flow immunoassays by using in-situ synthesis of CdS NW photosensor. Anal. Chim. Acta 927, 99–106 (2016).

    Article  CAS  Google Scholar 

  12. Im, J.-H., Kim, H.-R., An, B.-G., Chang, Y.W., Kang, M.-J., Lee, T.-G., Son, J.G., Park, J.-G. & Pyun, J.-C. In situ-synthesized cadmium sulfide nanowire photosensor with a parylene passivation layer for chemiluminescent immunoassays. Biosens. Bioelectron. 92, 221–228 (2017).

    Article  CAS  Google Scholar 

  13. Ahn, S.-E., Ji, H.J., Kim, K., Kim, G.T., Bae, C.H., Park, S.M., Kim, Y.-K. & Ha, J.S. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett. 90, 153106 (2007).

    Article  Google Scholar 

  14. Ghosh, R., Dutta, M. & Basak, D. Self-seeded growth and ultraviolet photoresponse properties of ZnO nanowire arrays. Appl. Phys. Lett. 91, 073108 (2007).

    Article  Google Scholar 

  15. Gu, Y. & Lauhon, L.J. Space-charge-limited current in nanowires depleted by oxygen adsorption. Appl. Phys. Lett. 89, 143102 (2006).

    Article  Google Scholar 

  16. He, J., Lin, Y.H., McConney, M.E., Tsukruk, V.V., Wang, Z.L. & Bao, G. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization. J. Appl. Phys. 102, 084303 (2007).

    Article  Google Scholar 

  17. Hong, W.-K., Kim, B.-J., Kim, T.-W., Jo, G., Song, S., Kwon, S.-S., Yoon, A., Stach, E.A. & Lee, T. Electrical properties of ZnO nanowire field effect transistors by surface passivation. Colloids Surf., A 313, 378–382 (2008).

    Article  Google Scholar 

  18. Law, J. & Thong, J. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett. 88, 133114 (2006).

    Article  Google Scholar 

  19. Kim, H.-R., An, B.-G., Chang, Y.W., Kang, M.-J., Park, J.-G. & Pyun, J.-C. Highly sensitive in situ-synthesized cadmium sulfide (CdS) nanowire photosensor for chemiluminescent immunoassays. Enzyme Microb. Technol. 133, 109457 (2020).

    Article  CAS  Google Scholar 

  20. Wang, Y., Kang, K.-M., Kim, M. & Park, H.-H. Effective oxygen-defect passivation in ZnO thin films prepared by atomic layer deposition using hydrogen peroxide. J. Korean Ceram. Soc. 56, 302–307 (2019).

    Article  CAS  Google Scholar 

  21. Kwon, S. & Choi, S.-J. Development of tubing-based stationary liquid-phase enzyme-linked immunosorbent assay. Biochip J. 13, 174–181 (2019).

    Article  CAS  Google Scholar 

  22. Truong, C.K.P., Nguyen, T.D.D. & Shin, I.-S. Electrochemiluminescent chemosensors for clinical applications: A review. Biochip J. 13, 203–216 (2019).

    Article  CAS  Google Scholar 

  23. Bong, J.-H., Kim, J., Lee, G.-Y., Park, J.-H., Kim, T.-H., Kang, M.-J. & Pyun, J.-C. Fluorescence immunoassay of E. coli using anti-lipopolysaccharide antibodies isolated from human serum. Biosens. Bioelectron. 126, 518–528 (2019).

    Article  CAS  Google Scholar 

  24. Bong, J.-H., Yoo, G., Park, M., Kang, M.-J., Jose, J. & Pyun, J.-C. Ultrasonic isolation of the outer membrane of Escherichia coli with autodisplayed Z-domains. Enzyme Microb. Technol. 66, 42–47 (2014).

    Article  CAS  Google Scholar 

  25. Mandakhalikar, K.D., Rahmat, J.N., Chiong, E., Neoh, K.G., Shen, L. & Tambyah, P.A. Extraction and quantification of biofilm bacteria: method optimized for urinary catheters. Sci. Rep. 8, 8069 (2018).

    Article  Google Scholar 

  26. Kim, J.I., Lee, G.Y., Ko, H., Kang, M.J. & Pyun, J.-C. Covalent protein immobilization with a parylene-H film for matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 27, 1149–1154 (2013).

    Article  CAS  Google Scholar 

  27. Kim, J.-I., Noh, J.-Y., Kim, M., Park, J.-M., Song, H.-W., Kang, M.-J. & Pyun, J.-C. Newborn screening by matrix-assisted laser desorption/ionization mass spectrometry based on parylene-matrix chip. Anal. Biochem. 530, 31–39 (2017).

    Article  CAS  Google Scholar 

  28. Liaqat, U., Ko, H., Suh, H., Lee, M. & Pyun, J.-C. Surface modification of parylene-N films for the culture of osteoblast-like cells (MG-63). Appl. Surf. Sci 378, 277–285 (2016).

    Article  CAS  Google Scholar 

  29. Liaqat, U., Ko, H., Suh, H., Lee, M. & Pyun, J.-C. UV-irradiated parylene surfaces for proliferation and differentiation of PC-12 cells. Enzyme Microb. Technol. 97, 1–10 (2017).

    Article  CAS  Google Scholar 

  30. Park, J.-M., Kim, J.-I., Noh, J.-Y., Kim, M., Kang, M.-J. & Pyun, J.-C. A highly sensitive carbapenemase assay using laser desorption/ionization mass spectrometry based on a parylene-matrix chip. Enzyme Microb. Technol. 104, 56–68 (2017).

    Article  CAS  Google Scholar 

  31. Ko, H., Choi, Y.-H., Chang, S.-Y., Lee, G.-Y., Song, H.-W., Chang, Y.W., Kang, M.-J. & Pyun, J.-C. Surface modification of parylene-N with UV-treatment to enhance the protein immobilization. Eur. Polym. J. 68, 36–46 (2015).

    Article  CAS  Google Scholar 

  32. Park, M., Pyun, J.-C. & Jose, J. Orientation and density control of proteins on solid matters by outer membrane coating: Analytical and diagnostic applications. J. Pharm. Biomed. Anal. 147, 174–184 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea [grant number: NRF-2020R1A2B5B01002187].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chul Pyun.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HR., Bong, JH., Jung, J. et al. An On-chip Chemiluminescent Immunoassay for Bacterial Detection using in Situ-synthesized Cadmium Sulfide Nanowires with Passivation Layers. BioChip J 14, 268–278 (2020). https://doi.org/10.1007/s13206-020-4305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4305-1

Keywords

Navigation