Skip to main content
Log in

Insights into the Spin-Lattice Dynamics of Organic Radicals Beyond Molecular Tumbling: A Combined Molecular Dynamics and Machine-Learning Approach

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The prediction of spin-lattice dynamics is a challenging computational and theoretical problem due to the complex interplay among atomic motion and spin interactions. Here, we employ machine-learning paradigms to generate a first-principles-accurate and computationally inexpensive model that predicts both conformational energy and spin Hamiltonian parameters of an organic radical as function of its molecular distortions. This model is applied to the study of the g tensor correlation function during molecular dynamics in solution and it is shown that it is possible to access the time dependence of the spin Hamiltonian parameters without making assumptions on the type of molecular motion or spin-lattice dynamics’ time-scales involved. We further use these approach to disentangle inter- and intra-molecular contributions to the g tensor correlation function and provide new insights into the nature of vibronic-coupling in organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.P. Klare, H.-J. Steinhoff, Photosynth. Res. 102, 377–390 (2009)

    Google Scholar 

  2. A.-L.A. Barra, L.L.-C. Brunel, D. Gatteschi, L. Pardi, R. Sessoli, Acc. Chem. Res. 31, 460–466 (1998)

    Google Scholar 

  3. C. Benelli, D. Gatteschi, Chem. Rev. 102, 2369–88 (2002)

    Google Scholar 

  4. A. Bencini, D. Gatteschi, EPR of Exchange Coupled Systems (Courier Corporation, 2012)

  5. G. Szulczewski, S. Sanvito, M. Coey, Nat. Publ. Gr. 8, 693–695 (2009)

    Google Scholar 

  6. L. Escalera-Moreno, J.J. Baldoví, A. Gaita-Ariño, E. Coronado, Chem. Sci. 9, 3265–3275 (2018)

    Google Scholar 

  7. V. Barone, M. Brustolon, P. Cimino, A. Polimeno, M. Zerbetto, A. Zoleo, J. Am. Chem. Soc. 128, 15865–15873 (2006)

    Google Scholar 

  8. V.S. Oganesyan, J. Magn. Reson. 188, 196–205 (2007)

    ADS  Google Scholar 

  9. D.P. Rangel, P.C. Baveye, B.H. Robinson, J. Phys. Chem. B 116, 6233–6249 (2012)

    Google Scholar 

  10. A. Lunghi, S. Sanvito, Sci. Adv. 5, eaax7163 (2019)

    ADS  Google Scholar 

  11. D. Kruk, J. Kowalewski, P.-O. Westlund, D. Kruk, J. Chem. Phys. 121, 2215–2227 (2008)

    ADS  Google Scholar 

  12. J. Rantaharju, J. Meres, J. Vaara, J. Chem. Phys. 141, 014109 (2014)

    ADS  Google Scholar 

  13. A. Lunghi, F. Totti, S. Sanvito, R. Sessoli, Chem. Sci. 8, 6051–6059 (2017)

    Google Scholar 

  14. A. Philips, A. Marchenko, L.C. Ducati, J. Autschbach, J. Chem. Theory Comput. 15, 509–519 (2019)

    Google Scholar 

  15. C. Gösweiner, P.-O. Westlund, H. Scharfetter, Mol. Phys. e1743888 (2020)

  16. A. Bencini, F. Totti, C.C.A. Daul, K. Doclo, V. Barone, Inorg. Chem. 1669, 5022–5030 (1997)

    Google Scholar 

  17. O.L. Malkina, J. Vaara, B. Schimmelpfenning, M. Munzarová, V.G. Malkin, M. Kaupp, J. Am. Chem. Soc. 122, 9206–9218 (2000)

    Google Scholar 

  18. F. Neese, J. Chem. Phys. 115, 11080 (2001)

    ADS  Google Scholar 

  19. M. Kaupp, R. Reviakine, O.L. Malkina, A. Arbuznikov, B. Schimmelpfennig, V.G. Malkin, J. Comput. Chem. 23, 794–803 (2002)

    Google Scholar 

  20. D. Ganyushin, F. Neese, J. Chem. Phys. 125, 24103 (2006)

    Google Scholar 

  21. A. Bencini, F. Totti, J. Chem. Theory Comput. 5, 144–154 (2009)

    Google Scholar 

  22. J. Asher, N. Doltsinis, M. Kaupp, J. Am. Chem. Soc. 126, 9854–9861 (2004)

    Google Scholar 

  23. H. Elgabarty, M. Wolff, A. Glaubits, D. Hinderberger, D. Sebastiani, Phys. Chem. Chem. Phys. 15, 16082–16089 (2013)

    Google Scholar 

  24. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559, 547–555 (2018)

    ADS  Google Scholar 

  25. J. Meiler, J. Biomol. NMR 26, 25–37 (2003)

    Google Scholar 

  26. J. Cuny, Y. Xie, C.J. Pickard, A.A. Hassanali, J. Chem. Theory Comput. 12, 765–773 (2016)

    Google Scholar 

  27. A. Lunghi, S. Sanvito, J. Phys. Chem. C 124, 5802–5806 (2020)

    Google Scholar 

  28. S. Schott, E.R. McNellis, C.B. Nielsen, H.-Y. Chen, S. Watanabe, H. Tanaka, I. McCulloch, K. Takimiya, J. Sinova, H. Sirringhaus, Nat. Commun. 8, 15200 (2017)

    ADS  Google Scholar 

  29. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012)

    Google Scholar 

  30. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 533–539 (1996)

    Google Scholar 

  31. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    ADS  Google Scholar 

  32. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys. 285, 316–330 (2015)

    MathSciNet  ADS  Google Scholar 

  33. A. Lunghi, S. Sanvito, Sci. Adv. 5, eaaw2210 (2019)

    ADS  Google Scholar 

  34. J. Wang, R.R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25, 1157–1174 (2004)

    Google Scholar 

  35. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)

    ADS  Google Scholar 

  36. A.P. Bartok, R. Kondor, G. Csanyi, Phys. Rev. B 87, 184115 (2013)

    ADS  Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    ADS  Google Scholar 

  38. J. Kennedy, R. Eberhart, Proc. IEEE Int. Conf. Neural Networks 4, 1942–1948 (1995)

    Google Scholar 

  39. D. P. Kingma, J. Ba, in Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, (San Diego, California, USA, 7–9 May 2015). arXiv:1412.6980v9

  40. J. Behler, J. Chem. Phys. 145, 170901 (2016)

    ADS  Google Scholar 

  41. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Sci. Adv. 3, e1603015 (2017)

    ADS  Google Scholar 

  42. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Czanyi, M. Ceriotti, Sci. Adv. 3, e1701816 (2017)

    ADS  Google Scholar 

  43. N. Neto, L. Bellucci, Chem. Phys. 328, 259–268 (2006)

    Google Scholar 

  44. E.R. McNellis, S. Schott, H. Sirringhaus, J. Sinova, Phys. Rev. Mater. 2, 74405 (2018)

    Google Scholar 

  45. F. Neese, M. Atanasov, G. Bistoni, D. Manganas, S. Ye, J. Am. Chem. Soc. 141, 2814–2824 (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been sponsored by AMBER (grant 12/RC/2278_P2). Computational resources were provided by the Trinity Centre for High Performance Computing (TCHPC) and the Irish Centre for High-End Computing (ICHEC). We also acknowledge the MOLSPIN COST action CA15128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Lunghi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunghi, A. Insights into the Spin-Lattice Dynamics of Organic Radicals Beyond Molecular Tumbling: A Combined Molecular Dynamics and Machine-Learning Approach. Appl Magn Reson 51, 1343–1356 (2020). https://doi.org/10.1007/s00723-020-01255-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01255-5

Navigation