Skip to main content
Log in

New Proluciferin Substrates for Human CYP4 Family Enzymes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We report the synthesis of seven new proluciferins for convenient activity determination of enzymes belonging to the cytochrome P450 (CYP) 4 family. Biotransformation of these probe substrates was monitored using each of the twelve human CYP4 family members, and eight were found to act at least on one of them. For all substrates, activity of CYP4Z1 was always highest, while that of CYP4F8 was always second highest. Site of metabolism (SOM) predictions involving SMARTCyp and docking experiments helped to rationalize the observed activity trends linked to substrate accessibility and reactivity. We further report the first homology model of CYP4F8 including suggested substrate recognition residues in a catalytically competent conformation accessed by replica exchange solute tempering (REST) simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Omura, T. (2013). Contribution of cytochrome P450 to the diversification of eukaryotic organisms. Biotechnology and Applied Biochemistry, 60(1), 4–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bernhardt, R. (2005), in Encyclopedia of Biological Chemistry, vol. 1, (Lennarz, W., Lane, M., Modrich, P., Dixon, J., Carafoli, E., Exton, J. and Cleveland, D., eds.), Academic Press, pp. 544-549.

  3. Durairaj, P., Fan, L., Du, W., Ahmad, S., Mebrahtu, D., Sharma, S., Ashraf, R. A., Liu, J., Liu, Q., & Bureik, M. (2019). Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Letters, 593(12), 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  4. Nebert, D. W., Wikvall, K., & Miller, W. L. (2013). Human cytochromes P450 in health and disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 20120431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dowsett, M., Cuzick, J., Ingle, J., Coates, A., Forbes, J., Bliss, J., Buyse, M., Baum, M., Buzdar, A., Colleoni, M., Coombes, C., Snowdon, C., Gnant, M., Jakesz, R., Kaufmann, M., Boccardo, F., Godwin, J., Davies, C., & Peto, R. (2010). Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 28(3), 509–518.

    Article  CAS  Google Scholar 

  6. Zhang, J., Kale, V., & Chen, M. (2015). Gene-directed enzyme prodrug therapy. The AAPS Journal, 17(1), 102–110.

    Article  CAS  PubMed  Google Scholar 

  7. Rieger, M. A., Ebner, R., Bell, D. R., Kiessling, A., Rohayem, J., Schmitz, M., Temme, A., Rieber, E. P., & Weigle, B. (2004). Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Cancer Research, 64(7), 2357–2364.

    Article  CAS  PubMed  Google Scholar 

  8. Downie, D., McFadyen, M. C., Rooney, P. H., Cruickshank, M. E., Parkin, D. E., Miller, I. D., Telfer, C., Melvin, W. T., & Murray, G. I. (2005). Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clinical Cancer Research, 11(20), 7369–7375.

    Article  CAS  PubMed  Google Scholar 

  9. Zöllner, A., Dragan, C. A., Pistorius, D., Muller, R., Bode, H. B., Peters, F. T., Maurer, H. H., & Bureik, M. (2009). Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid. Biological Chemistry, 390(4), 313–317.

    Article  PubMed  CAS  Google Scholar 

  10. McDonald, M. G., Ray, S., Amorosi, C. J., Sitko, K. A., Kowalski, J. P., Paco, L., Nath, A., Gallis, B., Totah, R. A., Dunham, M. J., Fowler, D. M., & Rettie, A. E. (2017). Expression and functional characterization of breast cancer-associated cytochrome P450 4Z1 in Saccharomyces cerevisiae. Drug Metabolism and Disposition, 45(12), 1364–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nunna, V., Jalal, N., & Bureik, M. (2017). Anti-CYP4Z1 autoantibodies detected in breast cancer patients. Cellular & Molecular Immunology, 14(6), 572–574.

    Article  CAS  Google Scholar 

  12. Khayeka-Wandabwa, C., Ma, X., Cao, X., Nunna, V., Pathak, J. L., Bernhardt, R., Cai, P., & Bureik, M. (2019). Plasma membrane localization of CYP4Z1 and CYP19A1 and the detection of anti-CYP19A1 autoantibodies in humans. International Immunopharmacology, 73, 64–71.

    Article  CAS  PubMed  Google Scholar 

  13. Yan, Q., Machalz, D., Zollner, A., Sorensen, E. J., Wolber, G., & Bureik, M. (2017). Efficient substrate screening and inhibitor testing of human CYP4Z1 using permeabilized recombinant fission yeast. Biochemical Pharmacology, 146, 174–187.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, X., Hutter, M., Goh, W. W., & Bureik, M. (2017). CYP4Z1 - a human cytochrome P450 enzyme that might hold the key to curing breast cancer. Current Pharmaceutical Design, 23, 2060–2064.

    Article  CAS  PubMed  Google Scholar 

  15. Cali, J. J., Ma, D., Sobol, M., Simpson, D. J., Frackman, S., Good, T. D., Daily, W. J., & Liu, D. (2006). Luminogenic cytochrome P450 assays. Expert Opinion on Drug Metabolism & Toxicology, 2(4), 629–645.

    Article  CAS  Google Scholar 

  16. Cali, J. J., Ma, D., Wood, M. G., Meisenheimer, P. L., & Klaubert, D. H. (2012). Bioluminescent assays for ADME evaluation: dialing in CYP selectivity with luminogenic substrates. Expert Opinion on Drug Metabolism & Toxicology, 8(9), 1115–1130.

    Article  CAS  Google Scholar 

  17. Ke, B. W., Chen, H., Ma, L., Zingales, S., Gong, D. Y., Hu, D., Du, L. P., & Li, M. Y. (2018). Visualization of mercury(II) accumulation in vivo using bioluminescence imaging with a highly selective probe. Organic & Biomolecular Chemistry, 16(14), 2388–2392.

    Article  CAS  Google Scholar 

  18. McCutcheon, D. C., Paley, M. A., Steinhardt, R. C., & Prescher, J. A. (2012). Expedient synthesis of electronically modified luciferins for bioluminescence imaging. Journal of the American Chemical Society, 134(18), 7604–7607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alfa, C., Fantes, P., Hyams, J., McLeod, M., & Warbrick, E. (1993). Experiments with fission yeast. A laboratory course manual. Cold Spring Harbor: Cold Spring Harbor Press.

    Google Scholar 

  20. Dragan, C. A., Peters, F. T., Bour, P., Schwaninger, A. E., Schaan, S. M., Neunzig, I., Widjaja, M., Zapp, J., Kraemer, T., Maurer, H. H., & Bureik, M. (2011). Convenient gram-scale metabolite synthesis by engineered fission yeast strains expressing functional human P450 systems. Applied Biochemistry and Biotechnology, 163(8), 965–980.

    Article  CAS  PubMed  Google Scholar 

  21. Durairaj, P., Fan, L., Machalz, D., Wolber, G., & Bureik, M. (2019). Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Letters, 593(16), 2214–2225.

    Article  CAS  PubMed  Google Scholar 

  22. Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: protein structure and function prediction. Nature Methods, 12(1), 7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hsu, M. H., Baer, B. R., Rettie, A. E., & Johnson, E. F. (2017). The crystal structure of cytochrome P450 4B1 (CYP4B1) monooxygenase complexed with octane discloses several structural adaptations for omega-hydroxylation. The Journal of Biological Chemistry, 292(13), 5610–5621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, P., Kim, B., Friesner, R. A., & Berne, B. J. (2005). Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13749–13754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, L., Friesner, R. A., & Berne, B. J. (2011). Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). The Journal of Physical Chemistry. B, 115(30), 9431–9438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du, W., Machalz, D., Yan, Q., Sorensen, E. J., Wolber, G., & Bureik, M. (2020). Importance of asparagine-381 and arginine-487 for substrate recognition in CYP4Z1. Biochemical Pharmacology, 174, 113850.

    Article  CAS  PubMed  Google Scholar 

  29. Bowers, K., Chow, E., Xu, H., Dror, R., Eastwood, M., Gregersen, B., Klepeis, J., Kolossvary, I., Moraes, M., Sacerdoti, F., Salmon, J., Shan, Y. and Shaw, D. (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. 43-43.

  30. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(33–38), 27–38.

    Google Scholar 

  31. Hritz, J., de Ruiter, A., & Oostenbrink, C. (2008). Impact of plasticity and flexibility on docking results for cytochrome P450 2D6: a combined approach of molecular dynamics and ligand docking. Journal of Medicinal Chemistry, 51(23), 7469–7477.

    Article  CAS  PubMed  Google Scholar 

  32. Shaik, S., Cohen, S., Wang, Y., Chen, H., Kumar, D., & Thiel, W. (2010). P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chemical Reviews, 110(2), 949–1017.

    Article  CAS  PubMed  Google Scholar 

  33. Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748.

    Article  CAS  PubMed  Google Scholar 

  34. Seidel, T., Ibis, G., Bendix, F., & Wolber, G. (2010). Strategies for 3D pharmacophore-based virtual screening. Drug Discovery Today: Technologies, 7(4), e221–e228.

    Article  CAS  Google Scholar 

  35. Wolber, G., & Langer, T. (2005). LigandScout: 3-d pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169.

    Article  CAS  PubMed  Google Scholar 

  36. Wolber, G. and Sippl, W. (2015), in The practice of medicinal chemistry (4th edition), (Wermuth, C. G. and Rognan, D., eds.), Elsevier Ltd, Philadelphia, PA, USA, pp. 489-507.

  37. Halgren, T. A., & Nachbar, R. B. (1996). Merck molecular force field. IV. Conformational energies and geometries for MMFF94. Journal of Computational Chemistry, 17(5-6), 587–615.

    Article  CAS  Google Scholar 

  38. Olsen, L., Rydberg, P., Rod, T. H., & Ryde, U. (2006). Prediction of activation energies for hydrogen abstraction by cytochrome p450. Journal of Medicinal Chemistry, 49(22), 6489–6499.

    Article  CAS  PubMed  Google Scholar 

  39. Rydberg, P., Ryde, U., & Olsen, L. (2008). Prediction of activation energies for aromatic oxidation by cytochrome P450. The Journal of Physical Chemistry. A, 112(50), 13058–13065.

    Article  CAS  PubMed  Google Scholar 

  40. Rydberg, P., Gloriam, D. E., & Olsen, L. (2010). The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics, 26(23), 2988–2989.

    Article  CAS  PubMed  Google Scholar 

  41. Rydberg, P., Gloriam, D. E., Zaretzki, J., Breneman, C., & Olsen, L. (2010). SMARTCyp: a 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Medicinal Chemistry Letters, 1(3), 96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olsen, L., Montefiori, M., Tran, K. P., & Jorgensen, F. S. (2019). SMARTCyp 3.0: enhanced cytochrome P450 site-of-metabolism prediction server. Bioinformatics, 35(17), 3174–3175.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, E. S., Choy, Y. M., & Wong, H. N. C. (1996). Synthetic studies on prehispanolone and 14,15-dihydroprehispanolone. Tetrahedron, 52(37), 12137–12158.

    Article  CAS  Google Scholar 

  44. Kitagawa, T., & Akiyama, N. (1997). An improved method for the synthesis of DL-3-(2-furyl)alanine. Chemical & Pharmaceutical Bulletin, 45(11), 1865–1866.

    Article  CAS  Google Scholar 

  45. LeBrun, L. A., Xu, F., Kroetz, D. L., & Ortiz de Montellano, P. R. (2002). Covalent attachment of the heme prosthetic group in the CYP4F cytochrome P450 family. Biochemistry, 41(18), 5931–5937.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, Y. M., Baer, B. R., Kneller, M. B., Henne, K. R., Kunze, K. L., & Rettie, A. E. (2003). Covalent heme binding to CYP4B1 via Glu310 and a carbocation porphyrin intermediate. Biochemistry, 42(15), 4601–4606.

    Article  CAS  PubMed  Google Scholar 

  47. Kirchmair, J., Goller, A. H., Lang, D., Kunze, J., Testa, B., Wilson, I. D., Glen, R. C., & Schneider, G. (2015). Predicting drug metabolism: experiment and/or computation? Nature Reviews. Drug Discovery, 14(6), 387–404.

    Article  CAS  PubMed  Google Scholar 

  48. Kirchmair, J., Williamson, M. J., Tyzack, J. D., Tan, L., Bond, P. J., Bender, A., & Glen, R. C. (2012). Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. Journal of Chemical Information and Modeling, 52(3), 617–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erik J. Sorensen or Matthias Bureik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 68288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Machalz, D., Wolber, G. et al. New Proluciferin Substrates for Human CYP4 Family Enzymes. Appl Biochem Biotechnol 193, 218–237 (2021). https://doi.org/10.1007/s12010-020-03388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03388-6

Keywords

Navigation