Skip to main content
Log in

Nonlinear Stability of Rarefaction Waves for a Compressible Micropolar Fluid Model with Zero Heat Conductivity

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In 2018, Duan [1] studied the case of zero heat conductivity for a one-dimensional compressible micropolar fluid model. Due to the absence of heat conductivity, it is quite difficult to close the energy estimates. He considered the far-field states of the initial data to be constants; that is, \(\mathop {\lim }\limits_{x \to \pm \infty } ({v_0},{u_0},{\omega _0},{\theta _0})(x) = (1,0,0,1)\). He proved that the solution tends asymptotically to those constants. In this article, under the same hypothesis that the heat conductivity is zero, we consider the far-field states of the initial data to be different constants — that is, \(\mathop {\lim }\limits_{x \to \pm \infty } ({v_0},{u_0},{\omega _0},{\theta _0})(x) = ({v_ \pm },{u_ \pm },0,{\theta _ \pm })\)-and we prove that if both the initial perturbation and the strength of the rarefaction waves are assumed to be suitably small, the Cauchy problem admits a unique global solution that tends time — asymptotically toward the combination of two rarefaction waves from different families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Duan R. Global solutions for the 1-D compressible micropolar fluid model with zero heat conductivity. J Math Anal Appl, 2018, 463: 477–495

    MathSciNet  MATH  Google Scholar 

  2. Eringen A C. Theory of micropolar fluids. J Math Mech, 1966, 16: 1–18

    MathSciNet  Google Scholar 

  3. Eringen A C. Theory of themomicro fluids. J Math Anal Appl, 1972, 38: 480–496

    Google Scholar 

  4. Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid: a local exsitence theorem. Glasnil Mathematicki, 1998, 33(53): 71–91

    MathSciNet  MATH  Google Scholar 

  5. Duan R. Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal RWA, 2018, 42: 71–92

    MathSciNet  MATH  Google Scholar 

  6. Lukaszewicz G. Micropolar Fluids. Theory and applications, Modeling and Simulation in Science, Engineering and Technology. Baston: Birkhauser, 1999

    MATH  Google Scholar 

  7. Eringen A C. Microcontinuum Field Theories: I. Foundations and Solids. Berlin: Springer, 1999

    MATH  Google Scholar 

  8. Liu Q Q, Yin H Y. Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model. Nonlinear Anal Theory Methods Appl, 2017, 149: 41–55

    MathSciNet  MATH  Google Scholar 

  9. Jin J, Duan R. Stability of Rarefaction waves for 1-D compressible viscous micropolar fluid model. J Math Anal Appl, 2017, 450: 1123–1143

    MathSciNet  MATH  Google Scholar 

  10. Cui H B, Yin H Y. Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate. J Math Anal Appl, 2017, 449: 464–489

    MathSciNet  MATH  Google Scholar 

  11. Kawashima S, Okada M. Smooth global solutions for one-dimensional equations in magnetohydrodynamics. Proc Japan Acad Ser A, 1982, 58: 384–387

    MathSciNet  MATH  Google Scholar 

  12. Matsumura A, Nishihara K. Asymptotic toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3: 1–13

    MathSciNet  MATH  Google Scholar 

  13. Matsumura A, Nishihara K. Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992, 144: 325–335

    MathSciNet  MATH  Google Scholar 

  14. Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem. Glas Mat Ser III, 1998, 33(53): 199–208

    MathSciNet  MATH  Google Scholar 

  15. Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution. Rad Mat, 2001, 10: 181–193

    MathSciNet  MATH  Google Scholar 

  16. Mujaković N. Global in time estimates for one-dimensional compressible viscous micropolar fluid model. Glas Mat Ser III, 40(60): 103–120

  17. Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid: stabilization of the solution//Proceedings of the Conference on Applied Mathematics and Scientific Computing. Dordrecht: Springer, 2005: 253–262

    MATH  Google Scholar 

  18. Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a local existence theorem. Ann Univ Ferrara Sez VII Sci Mat, 2007, 53(2): 361–379

    MathSciNet  MATH  Google Scholar 

  19. Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution. Bound Value Probl, 2008, Article ID 189748

  20. Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a global existence theorem. Math Inequal Appl, 2009, 12: 651–662

    MathSciNet  MATH  Google Scholar 

  21. Mujaković N. One-dimensional compressible viscous micropolar fluid model: stabilization of the solution for the Cauchy problem. Bound Value Probl, 2010, Article ID 796065

    Google Scholar 

  22. Chen M T. Global strong solutions for the viscous, micropolar, compressible flow. J Partial Differ Equ, 2011, 24: 158–164

    MathSciNet  MATH  Google Scholar 

  23. Qin Y, Wang T, Hu G. The Cauchy problem for a 1D compressible viscous micropolar fluid model: analysis of the stabilization and the regularity. Nonlinear Anal Real World Appl, 2012, 13: 1010–1029

    MathSciNet  MATH  Google Scholar 

  24. Huang L, Nie D Y. Exponential stability for a one-dimensional compressible viscous micropolar fluid. Math Methods Appl Sci, 2015, 38: 5197–5206

    MathSciNet  MATH  Google Scholar 

  25. Mujaković N, ČrnjariČ-Žic N. Global solution to 1-D model of a compressible viscous micropolar heat-conducting fluid with free boundary. Acta Math Sci, 2016, 36B(6): 1541–1576

    MathSciNet  MATH  Google Scholar 

  26. Zheng L Y, Chen, Zhang S N. Asymptotic stability of a composite wave for the one-dimensional compressible micropolar fluid model without viscosity. J Math Anal Appl, 2018, 468: 865–892

    MathSciNet  MATH  Google Scholar 

  27. Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a local existence theorem. Bound Value Probl, 2012, 69: 1–25

    MathSciNet  MATH  Google Scholar 

  28. Chen M T. Blow up criterion for viscous, compressible micropolar fluids with vacuum. Nonlinear Anal Real World Appl, 2012, 13(2): 850–859

    MathSciNet  MATH  Google Scholar 

  29. Chen M T, Huang B, Zhang J W. Blow up criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum. Nonlinear Anal Theory Methods Appl, 2013, 79: 1–11

    MATH  Google Scholar 

  30. Mujaković N, Dražić I. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: uniqueness of a generalized solution. Bound Value Probl, 2014, 226: 1–25

    MathSciNet  MATH  Google Scholar 

  31. Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a global existence theorem. Bound Value Probl, 2015, 98: 1–25

    MathSciNet  MATH  Google Scholar 

  32. Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: large time behavior of the solution. J Math Anal Appl, 2015, 431: 545–568

    MathSciNet  MATH  Google Scholar 

  33. Chen M T, Xu X Y, Zhang J W. Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum. Commun Math Sci, 2015, 13: 225–247

    MathSciNet  MATH  Google Scholar 

  34. Liu Q Q, Zhang P X. Optimal time decay of the compressible micropolar fluids. J Differential Equations, 2016, 260: 7634–7661

    MathSciNet  MATH  Google Scholar 

  35. Wu Z G, Wang W K. The point estimates of diffusion wave of the compressible micropolar fluids. J Differential Equations, 2018, 265: 2544–2576

    MathSciNet  MATH  Google Scholar 

  36. Huang L, Kong C X. Global behavior for compressible viscous micropolar fluid with spherical symmetry. J Math Anal Appl, 2016, 443: 1158–1178

    MathSciNet  MATH  Google Scholar 

  37. Dražić I, Simčić L, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Regularity of the solution. J Math Anal Appl, 2016, 438: 162–183

    MathSciNet  MATH  Google Scholar 

  38. Mujaković N, Črnjarić-Žic N. Global solution to 3D problem of a compressible viscous micropolar fluid with spherical symmetry and a free boundary. J Math Anal Appl, 2017, 449: 1637–1669

    MathSciNet  MATH  Google Scholar 

  39. Su J R. Low Mach number limit of a compressible micropolar fluid model. Nonlinear Anal Real World Appl, 2017, 38: 21–34

    MathSciNet  MATH  Google Scholar 

  40. Su J R. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete Contin Dyn Syst, 2017, 37(6): 3423–3434

    MathSciNet  MATH  Google Scholar 

  41. Su J R. Incompressible limit of a compressible micropolar fluid model with general initial data. Nonlinear Anal, 2016, 132: 1–24

    MathSciNet  MATH  Google Scholar 

  42. Liu T, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1998, 118: 451–465

    MathSciNet  MATH  Google Scholar 

  43. Huang F M, Li J, Matsumura. Akitaka Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197(1): 89–116

    MathSciNet  MATH  Google Scholar 

  44. Huang F M, Wang T. Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system. Indiana Univ Math J, 2016, 65(6): 1833–1875

    MathSciNet  MATH  Google Scholar 

  45. Huang F M, Wang Y, Wang Y, et al. The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J Math Anal, 2013, 45(3): 1741–1811

    MathSciNet  MATH  Google Scholar 

  46. Huang F M, Wang Y, Yang T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem. Arch Ration Mech Anal, 2012, 203(2): 379–413

    MathSciNet  MATH  Google Scholar 

  47. Huang F M, Jiang S, Wang Y. Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data. Commun Inf Syst, 2013, 13(2): 211–246

    MathSciNet  MATH  Google Scholar 

  48. Huang F M, Wang Y, Yang T. Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinet Relat Models, 2010, 3(4): 685–728

    MathSciNet  MATH  Google Scholar 

  49. Huang F M, Li X. Convergence to the rarefaction wave for a model of radiating gas in one-dimension. Acta Math Appl Sin, 2016, 329(2): 239–256

    MathSciNet  MATH  Google Scholar 

  50. Huang F M, Li M, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44: 1742–1759

    MathSciNet  MATH  Google Scholar 

  51. Li M J, Wang T, Wang Y. The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficients. Anal Appl (Singap), 2015, 13(5): 555–589

    MathSciNet  MATH  Google Scholar 

  52. Huang F M, Qin X. Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes quations under large perturbation. J Differential Equations, 2009, 246: 4077–4096

    MathSciNet  MATH  Google Scholar 

  53. Jiu Q S, Wang Y, Xin Z P. Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity. Comm Partial Differential Equations, 2011, 36(4): 602–634

    MathSciNet  MATH  Google Scholar 

  54. Jiu Q S, Wang Y, Xin Z P. Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity. SIAM J Math Anal, 2013, 45(5): 3194–3228

    MathSciNet  MATH  Google Scholar 

  55. Li L, Wang Y. Stability of planar rarefaction wave to two-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2018, 50(5): 4937–4963

    MathSciNet  MATH  Google Scholar 

  56. Li L, Wang T, Wang Y. Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations. Arch Rational Mech Anal, 2018, 230: 911–937

    MathSciNet  MATH  Google Scholar 

  57. Wang Z A, Zhu C J. Stability of the rarefaction wave for the generalized Kdv-Burgers equation. Acta Math Sci, 2002, 22B(3): 319–328

    MathSciNet  MATH  Google Scholar 

  58. Zhu C J. Asymptotic behavior of solution for p-system with relaxation. J Differential Equations, 2002, 180(2): 273–306

    MathSciNet  MATH  Google Scholar 

  59. Duan R, Liu H X, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans Amer Math Soc, 2009, 361(1): 453–493

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jin.

Additional information

The first author was supported by Hubei Natural Science (2019CFB834). The second author was supported by the NSFC (11971193).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Rehman, N. & Jiang, Q. Nonlinear Stability of Rarefaction Waves for a Compressible Micropolar Fluid Model with Zero Heat Conductivity. Acta Math Sci 40, 1352–1390 (2020). https://doi.org/10.1007/s10473-020-0512-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0512-z

Key words

2010 MR Subject Classification

Navigation