Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 31, 2020

Supramolecular assembly of ionic liquid induced by UO22+: a strategy for selective extraction-precipitation

  • Shancheng Feng and Xinghai Shen EMAIL logo
From the journal Radiochimica Acta

Abstract

In this work, a novel task specific ionic liquid (TSIL) [tributyl(hexyl)phosphonium]2[diglycolic acetate] ([P6,4,4,4]2[DGA]) was prepared and used to construct a vesicle system. The addition of UO22+, La3+ or Th4+ exhibited different effects on the system. It was found that small amount of UO22+ could induce large-sized aggregation of vesicles and make the precipitation happen, while La3+ and Th4+ did not have such capacity. The whole process was characterized by dynamic light scattering and freeze-fracture transmission electron microscopy. An extraction-precipitation strategy was then developed for the selective recovery of UO22+. Different factors were further studied to optimize the separation efficiency of the extraction-precipitation process.


Corresponding author: Xinghai Shen, Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China, E-mail:

Award Identifier / Grant number: U1830202

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by National Natural Science Foundation of China.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Acknowledgment

This work was supported by National Natural Science Foundation of China (No. U1830202).

References

1. Garten, C. T., Bondietti, E. A., Walker, R. L. Comparative uptake of uranium, thorium, and plutonium by biota inhabiting a contaminated tennessee floodplain. J. Environ. Qual. 1981, 10, 207–210.10.2134/jeq1981.00472425001000020017xSearch in Google Scholar

2. Xiong, J., Hu, S., Liu, Y., Yu, J., Yu, H., Xie, L., Wen, J., Wang, X. Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustain. Chem. Eng. 2017, 5, 1924–1930; https://doi.org/10.1021/acssuschemeng.6b02663.Search in Google Scholar

3. Beltrami, D., Cote, G., Mokhtari, H., Courtaud, B., Moyer, B. A., Chagnes, A. Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem. Rev. 2014, 114, 12002–12023; https://doi.org/10.1021/cr5001546.Search in Google Scholar PubMed

4. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Diwu, J., Wang, J., Zhou, R., Chai, Z., Wang, S. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 2017, 51, 3911–3921; https://doi.org/10.1021/acs.est.6b06305.Search in Google Scholar PubMed

5. Zhang, Z., Zhang, D., Shi, C., Liu, W., Chen, L., Miao, Y., Diwu, J., Li, J., Wang, S. 3,4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions. Environ. Sci. Nano. 2019, 6, 1457–1465; https://doi.org/10.1039/C9EN00148D.Search in Google Scholar

6. Ganesh, S., Khan, F., Ahmed, M. K., Velavendan, P., Pandey, N. K., Mudali, U. K., Pandey, S. K. Determination of ultra traces amount of uranium in raffinates of purex process by laser fluorimetry. J. Radioanal. Nucl. Chem. 2012, 292, 331–334; https://doi.org/10.1007/s10967-011-1431-1.Search in Google Scholar

7. Elabd, A. A., Elhefnawy, O. A. An efficient and sensitive optical sensor based on furosemide as a new fluoroionophore for determination of uranyl ion. J. Fluoresc. 2016, 26, 271–276; https://doi.org/10.1007/s10895-015-1709-8.Search in Google Scholar PubMed

8. Zhang, Y., Lu, K., Liu, M., Karatchevtseva, I., Tao, Z., Wei, G. Thorium(IV) and uranium(VI) compounds of cucurbit[10]uril: from a one-dimensional nanotube to a supramolecular framework. Dalton Trans. 2020, 49, 404–410; https://doi.org/10.1039/C9DT04299G.Search in Google Scholar

9. Li, S., Liao, L., Wu, R., Yang, Y., Xu, L. Determination of trace uranium (VI) using its self-assembly with a tetradentate–monodentate ditopic ligand by resonance light scattering. Int. J. Anal. Chem. 2016, 96, 542–551; https://doi.org/10.1080/03067319.2016.1172218.Search in Google Scholar

10. Chen, L., Wang, Y., Yuan, X., Ren, Y., Liu, N., Yuan, L., Feng, W. Highly selective extraction of uranium from nitric acid medium with phosphine oxide functionalized pillar[5]arenes in room temperature ionic liquid. Sep. Purif. Technol. 2018, 192, 152–159; https://doi.org/10.1016/j.seppur.2017.10.011.Search in Google Scholar

11. Chen, L., Cai, Y., Feng, W., Yuan, L. Pillararenes as macrocyclic hosts: a rising star in metal ion separation. Chem. Commun. 2019, 55, 7883–7898; https://doi.org/10.1039/C9CC03292D.Search in Google Scholar

12. Tian, K., Wu, J., Wang, J. Adsorptive extraction of uranium (VI) from seawater using dihydroimidazole functionalized multiwalled carbon nanotubes. Radiochim. Acta. 2018, 106, 719–731; https://doi.org/10.1515/ract-2017-2913.Search in Google Scholar

13. Kuznetsova, D. A., Gabdrakhmanov, D. R., Lukashenko, S. S., Voloshina, A. D., Sapunova, A. S., Kulik, N. V., Nizameev, I. R., Kadirov, M. K., Kashapov, R. R., Zakharova, L. Y. Supramolecular systems based on cationic imidazole-containing amphiphiles bearing hydroxyethyl fragment: aggregation properties and functional activity. J. Mol. Liq. 2019, 289, 111058; https://doi.org/10.1016/j.molliq.2019.111058.Search in Google Scholar

14. Belova, V. V., Martynova, M. M., Tsareva, Y. V., Baulin, V. E., Baulin, D. V. Solvent extraction of lanthanum(III) from chloride and nitrate aqueous solutions with dioctyldiglycolamates of dioctylammonium and trioctylammonium. J. Mol. Liq. 2019, 293, 111568; https://doi.org/10.1016/j.molliq.2019.111568.Search in Google Scholar

15. Rout, A., Krishna, G. M., Venkatesan, K. A. Electrochemical, thermodynamics, and spectroscopic investigation of Eu(III) in T2EHDGA–[C4mim][NTf2] mixture. Sep. Sci. Technol. 2019, 54, 1669–1680; https://doi.org/10.1080/01496395.2018.1563162.Search in Google Scholar

16. Chen, B., Wu, K., Yang, Y., Wang, N., Liu, Y., Hu, S., Wang, J., Wen, J., Hu, S., Chen, Q., Shen, X., Peng, S. A uranium capture strategy based on self-assembly in a hydroxyl-functionalized ionic liquid extraction system. Chem. Commun. 2019, 55, 6894–6897.10.1039/C9CC02823DSearch in Google Scholar PubMed

17. Sun, X. Q., Waters, K. E. The adjustable synergistic effects between acid-base coupling bifunctional ionic liquid extractants for rare earth separation. AlChE J. 2014, 60, 3859–3868; https://doi.org/10.1039/C9CC02823D.Search in Google Scholar

18. Freire, E., Mayorga, O. L., Straume, M. Isothermal titration calorimetry. Anal. Chem. 1990, 62, 950–959.10.1021/ac00217a002Search in Google Scholar

19. Zhang, Y. B., Ju, Y. L., Li, Y. Q., Li, X. Hydrothermal synthesis, crystal structure and fluorescence property of dysprosium coordination polymer with diglycolic acid. Chinese J. Inorg. Chem. 2007, 23, 2059–2064.Search in Google Scholar

20. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Gaussian 09, Revision D.01; Gaussian, Inc. Wallingford, CT, 2010.Search in Google Scholar

21. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652; https://doi.org/10.1063/1.464913.Search in Google Scholar

22. Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter. 1988, 37, 785–789; https://doi.org/10.1103/PhysRevB.37.785.Search in Google Scholar

23. Lu, T., Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar

24. Humphrey, W., Dalke, A., Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar

25. Anderson, J. L., Pino, V., Hagberg, E. C., Sheares, V. V., Armstrong, D. W. Surfactant solvation effects and micelle formation in ionic liquids. Chem. Commun. 2003, 19, 2444–2445; https://doi.org/10.1039/B307516H.Search in Google Scholar PubMed

26. Zhang, S., Li, N., Zheng, L., Li, X., Gao, Y., Yu, L. Aggregation behavior of pluronic triblock copolymer in 1-butyl-3-methylimidazolium type ionic liquids. J. Phys. Chem. B. 2008, 112, 10228–10233; https://doi.org/10.1021/jp8035132.Search in Google Scholar PubMed

27. Saha, A., Deb, S. B., Sarkar, A., Saxena, M. K., Tomar, B. S. Simultaneous preconcentration of uranium and thorium in aqueous samples using cloud point extraction. RSC Adv. 2016, 6, 20109–20119; https://doi.org/10.1039/C5RA23734C.Search in Google Scholar

28. Tunsu, C., Menard, Y., Eriksen, D. Ø., Ekberg, C., Petranikova, M. Recovery of critical materials from mine tailings: a comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. J. Clean. Prod. 2019, 218, 425–437. https://doi.org/10.1016/j.jclepro.2019.01.312.Search in Google Scholar

29. Turanov, A. N., Karandashev, V. K., Kharlamov, A. V., Bondarenko, N. A., Khvostikov, V. A. Extraction of lanthanides(III) from perchlorate solutions with carbamoyl- and phosphorylmethoxymethylphosphine oxides and tetrabutyldiglycolamide. Solvent Extr. Ion Exch. 2019, 37, 65–80; https://doi.org/10.1080/07366299.2019.1592923.Search in Google Scholar

30. Dong, Z., Yuan, W.-J., Liu, C., Zhao, L., Zhao, C., Tang, F.-D., He, L.-F. Th(IV) and U(VI) removal by TODGA in ionic liquids: extraction behavior and mechanism, and radiation effect. Nucl. Sci. Tech. 2017, 28, 86–92; https://doi.org/10.1007/s41365-017-0214-y.Search in Google Scholar

31. Rawat, N., Sharma, R. S., Nishad, A., Tomar, B. S., Manchanda, V. K. Thermodynamic study of Th(IV) complexes with dicarboxylates by potentiometry and calorimetry. Radiochim. Acta. 2011, 99, 341–347; https://doi.org/10.1524/ract.2011.1828.Search in Google Scholar

32. van Nispen, S. F. G. M., Custers, J. P. A., van den Broeke, L. J. P., Keurentjes, J. T. F. Characterization of the binding of multivalent ions to modified pluronic micelles by isothermal titration calorimetry and modified conductometry. Colloids Surf. A. 2010, 361, 38–44; https://doi.org/10.1016/j.colsurfa.2010.03.010.Search in Google Scholar

33. Liang, H., Chen, Q., Xu, C., Shen, X. Selective cloud point extraction of uranium from thorium and lanthanides using Cyanex 301 as extractant. Sep. Purif. Technol. 2019, 210, 835–842; https://doi.org/10.1016/j.seppur.2018.08.071.Search in Google Scholar

34. Xu, C., Tian, G., Teat, S. J., Rao, L. Complexation of U(VI) with dipicolinic acid: thermodynamics and coordination modes. Inorg. Chem. 2013, 52, 2750–2756; https://doi.org/10.1021/ic4000389.Search in Google Scholar PubMed

35. Vijayakumar, V., Ramesh Kumar, C., Sivaraman, N., Suresh, A., Kanekar, A. S., Bhattacharyya, A., Mohapatra, P. K. Novel diamide ligands with a central carbonyl group and their comparative evaluation with the diglycolamide ligand: synthesis, extraction, DFT and chromatographic studies. Radiochim. Acta. 2019, 107, 1133–1144.10.1515/ract-2019-3102Search in Google Scholar

36. Li, X., Ju, Y. Hydrothermal synthesis, crystal structure, and luminescence property of two lanthanide coordination polymers with diglycolic acid. J. Chem. Crystallogr. 2008, 39, 213–220; https://doi.org/10.1007/s10870-008-9462-3.Search in Google Scholar

37. Zhou, H., Wang, Y., Guo, X., Dong, Y., Su, X., Sun, X. The recovery of rare earth by a novel extraction and precipitation strategy using functional ionic liquids. J. Mol. Liq. 2018, 254, 414–420; https://doi.org/10.1016/j.molliq.2018.01.078.Search in Google Scholar

38. Su, X., Guo, X., Zhao, Z., Dong, Y., Wang, Y., Li, F., Sun, X. An efficient and sustainable [P6,6,6,14]2[BDOAC] ionic liquid based extraction–precipitation strategy for rare earth recovery. Chem. Eng. Res. Des. 2018, 136, 786–794.10.1016/j.cherd.2018.06.029Search in Google Scholar

39. Maria, L., Cruz, A., Carretas, J. M., Monteiro, B., Galinha, C., Gomes, S. S., Araújo, M. F., Paiva, I., Marçalo, J., Leal, J. P. Improving the selective extraction of lanthanides by using functionalised ionic liquids. Sep. Purif. Technol. 2020, 237, 116354; https://doi.org/10.1016/j.seppur.2019.116354.Search in Google Scholar

40. Rout, A., Binnemans, K. Liquid-liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Dalton Trans. 2014, 43, 1862–1872; https://doi.org/10.1039/c3dt52285g.Search in Google Scholar PubMed


Supplementary material

The online version of this article offers supplementary material https://doi.org/10.1515/ract-2020-0038.


Received: 2020-04-14
Accepted: 2020-05-19
Published Online: 2020-08-31
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0038/html
Scroll to top button