Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 31, 2020

Luminescence spectroscopic investigations of europium complexes formed in the kaolinite-humic acid/citric acid systems

  • Parveen Kumar Verma and Prasanta Kumar Mohapatra EMAIL logo
From the journal Radiochimica Acta

Abstract

In the present study, the nature of Eu(III) complexes (Eu(III) was used as a surrogate for Am(III)) formed in kaolinite–humic acid (HA)/citric acid (CA) system was investigated by luminescence spectroscopy. In addition to the ternary system (kaolinite + Eu + L(CA/HA)), the binary system (Eu-L) was also looked at for a better understanding of the complexes formed at the kaolinite surface. The lifetime and emission spectra of Eu-L complexes on the kaolinite surface differ considerably as compared to the same in the aqueous phase. The Eu-HA aqueous complexation shows differences in the excitation spectra with similar decay lifetimes with increasing aqueous HA concentrations. The ligand-to-metal charger transfer (LMCT) in the Eu-HA excitation spectra suggests the complexation of Eu(III) with HA at pH ∼ 4. Although the mode of Eu(III) binding to the kaolinite surface in the presence of CA/HA was the same i.e. metal-bridged ternary complex formation, the local surroundings around the sorbed Eu(III) differ in the two cases. The loading of HA in the Eu-HA-kaolinite system does not have a large effect on the local structure around the sorbed Eu(III) ion, but enhances the percentage of Eu(III) uptake onto the kaolinite surface. The number of H2O molecules in the primary hydration sphere of sorbed Eu(III) differs in the Eu-HA-kaolinite and Eu-CA-kaolinite systems. In addition, Eu(III) assisted precipitation of HA was also seen using a radiometric method.


Corresponding author: Prasanta Kumar Mohapatra, Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India, E-mail:

Acknowledgments

The authors thank Dr. P.K. Pujari, Director, RC&IG and Head, Radiochemistry Division for his support and encouragement. They also thank Dr. Kaushik Sanyal, Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay for the XRF measurements.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Huittinen, N., Sarv, P., Lehto, J., Huittinen, N., Sarv, P., Lehto, J. A H-1 and Al-27 NMR investigation of yttrium(III) and europium(III) interaction with kaolinite. Appl. Clay Sci. 2013, 80, 182; https://doi.org/10.1016/j.clay.2013.04.005.Search in Google Scholar

2. Ishida, K., Saito, T., Aoyagi, N., Kimura, T., Nagaishi, R., Nagasaki, S., Tanaka, S. Surface speciation of Eu3+ adsorbed on kaolinite by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC). J. Colloid Interf. Sci. 2012, 374, 258; https://doi.org/10.1016/j.jcis.2012.01.060.Search in Google Scholar

3. Banik, N. L., Buda, R. A., Bürger, S., Kratz, J. V., Trautmann, N. Speciation and interactions of plutonium with humic substances and kaolinite in aquifer systems. J. Alloys Compd. 2007, 444, 522; https://doi.org/10.1016/j.jallcom.2006.12.048.Search in Google Scholar

4. Lippold, H., Müller, N., Kupsch, H. Effect of humic acid on the pH-dependent adsorption of terbium(III) onto geological materials. Appl. Geochem. 2005, 20, 1209; https://doi.org/10.1016/j.apgeochem.2005.01.004.Search in Google Scholar

5. Niitsu, Y., Sato, S., Ohashi, H., Sakamoto, Y., Nagao, S., Ohnuki, T., Muraoka, S. Effects of humic acid on the sorption of neptunium(V) on kaolinite. J. Nucl. Mater. 1997, 248, 328; https://doi.org/10.1016/s0022-3115(97)00131-1.Search in Google Scholar

6. Sakuragi, T., Sato, S., Kozaki, T. Sorption of Eu(III) on kaolinite in the presence of humic acid: effects of ionic strength. Chem. Let. 2002, 31, 656; https://doi.org/10.1246/cl.2002.656.Search in Google Scholar

7. Samadfam, M., Sato, S., Ohashi, H. Effects of humic acid on the sorption of Eu(III) onto kaolinite. Radiochim. Acta 1998, 82, 361; https://doi.org/10.1524/ract.1998.82.special-issue.361.Search in Google Scholar

8. Schnurr, A., Marsac, R., Rabung, T., Lützenkirchen, J., Geckeis, H. Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, Laser-fluorescence spectroscopy and modeling. Geochim. Cosmochim. Acta 2015, 151, 192; https://doi.org/10.1016/j.gca.2014.11.011.Search in Google Scholar

9. Takahashi, Y., Kimura, T., Kato, Y., Minai, Y. Speciation of europium(III) sorbed on a montmorillonite surface in the presence of polycarboxylic acid by laser-induced fluorescence spectroscopy. Environ. Sci. Tech. 1999, 33, 4016; https://doi.org/10.1021/es990037n.Search in Google Scholar

10. Stevenson, F. J. Humus Chemistry Genesis, Composition, Reactions; Wiley Interscience Publication: New York, 1982.Search in Google Scholar

11. Fan, Q. H., Tan, X. L., Li, J. X., Wang, X. K., Wu, W. S., Montavon, G. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Tech 2009, 43, 5776; https://doi.org/10.1021/es901241f.Search in Google Scholar PubMed

12. Rabung, T., Pierret, M. C., Bauer, A., Geckeis, H., Bradbury, M. H., Baeyens, B. Sorption of Eu (III)/Cm (III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta 2005, 69, 5393; https://doi.org/10.1016/j.gca.2005.06.030.Search in Google Scholar

13. Bradbury, M. H., Baeyens, B., Geckeis, H., Rabung, T. Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: surface complexation modelling. Geochim. Cosmochim. Acta 2005, 69, 5403; https://doi.org/10.1016/j.gca.2005.06.031.Search in Google Scholar

14. Křepelová, A., Sachs, S., Bernhard, G. Influence of humic acid on the Am(III) sorption onto kaolinite. Radiochim. Acta 2011, 99, 253.https://doi.org/10.1524/ract.2011.1829.Search in Google Scholar

15. Huittinen, N., Sarv, P., Lehto, J. A proton NMR study on the specific sorption of yttrium(III) and europium(III) on gamma-alumina [γ-Al2O3]. J. Colloid Interf. Sci. 2011, 361, 252; https://doi.org/10.1016/j.jcis.2011.05.055.Search in Google Scholar PubMed

16. Geckeis, H., Lützenkirchen, J., Polly, R., Rabung, T., Schmidt, M. Mineral–water interface reactions of actinides. Chem. Rev. 2013, 113, 1016; https://doi.org/10.1021/cr300370h.Search in Google Scholar PubMed

17. Kowal-Fouchard, A., Drot, R., Simoni, E., Marmier, N., Fromage, F., Ehrhardt, J. J. Structural identification of europium(III) adsorption complexes on montmorillonite. New J. Chem. 2004, 28, 864; https://doi.org/10.1039/b400306c.Search in Google Scholar

18. Chen, C., Yang, X., Wei, J., Tan, X., Wang, X. Europium(III) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study. J. Colloid Interf. Sci. 2013, 393, 249; https://doi.org/10.1016/j.jcis.2012.10.032.Search in Google Scholar PubMed

19. Denecke, M. A. Actinide speciation using X-ray absorption fine structure spectroscopy. Coord. Chem. Rev. 2006, 250, 730; https://doi.org/10.1016/j.ccr.2005.09.004.Search in Google Scholar

20. Stumpf, S., Stumpf, T., Walther, C., Bosbach, D., Fanghänel, T. Sorption of Cm(III) onto different feldspar surfaces: a TRLFS study. Radiochim. Acta 2006, 94, 243; https://doi.org/10.1524/ract.2006.94.5.243.Search in Google Scholar

21. Tan, X., Fang, M., Wang, X. Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies: a review. Molecules 2010, 15, 8431; https://doi.org/10.3390/molecules15118431.Search in Google Scholar PubMed PubMed Central

22. Tertre, E., Berger, G., Simoni, E., Castet, S., Giffaut, E., Loubet, M., Catalette, H. Uropium retention onto clay minerals from 25 to 150°C: experimental measurements, spectroscopic features and sorption modeling. Geochim. Cosmochim. Acta 2006, 70, 4563; https://doi.org/10.1016/j.gca.2006.06.1568.Search in Google Scholar

23. Stumpf, T., Hennig, C., Bauer, A., Denecke, M. A., Fanghänel, T. An EXAFS and TRLFS study of the sorption of trivalent actinides onto smectite and kaolinite. Radiochim. Acta 2004, 92, 133; https://doi.org/10.1524/ract.92.3.133.30487.Search in Google Scholar

24. Stumpf, T., Bauer, A., Coppin, F., Fanghänel, T., Kim, J. I. nner-sphere, outer-sphere and ternary surface complexes: a TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite. Radiochim. Acta 2002, 90, 345; https://doi.org/10.1524/ract.2002.90.6.345.Search in Google Scholar

25. Wang, X. K., Rabung, T., Geckeis, H., Panak, P. J., Klenze, R., Fanghänel, T. Effect of humic acid on the sorption of Cm(III) onto γ-Al2O3 studied by the time-resolved laser fluorescence spectroscopy. Radiochim. Acta 2004, 92, 691; https://doi.org/10.1524/ract.92.9.691.54982.Search in Google Scholar

26. Chen, C., Yang, X., Wei, J., Tan, X., Wang, X. Eu (III) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study. J. Colloid Interf. Sci. 2013, 393, 249; https://doi.org/10.1016/j.jcis.2012.10.032.Search in Google Scholar PubMed

27. Tan, X. L., Wang, X. K., Geckeis, H., Rabung, T. H. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ. Sci. Tech. 2008, 42, 6532; https://doi.org/10.1021/es8007062.Search in Google Scholar PubMed

28. Huang, P. M., Violante, A. Influence of organic acids on crystallization and surface properties of precipitation products of aluminum. In Interaction of Soil Minerals with Natural Organics and Microbes; Huang, P. M., Schnitzer, M., Eds. Soil Science Society of America: Madison, WI, 1986; chapter 6.10.2136/sssaspecpub17.c6Search in Google Scholar

29. Verma, P. K., Pathak, P. N., Mohapatra, P. K., Godbole, S. V., Kadam, R. M., Veligzhanin, A. A., Zubavichus, Y. V., Kalmykov, S. N. Influences of different environmental parameters on the sorption of trivalent metal ions on bentonite: batch sorption, fluorescence, EXAFS and EPR studies. Environ. Sci. Proc. Impacts 2014, 16, 904; https://doi.org/10.1039/c3em00563a.Search in Google Scholar PubMed

30. Verma, P. K., Mohapatra, P. K. Effect of different complexing ligands on europium uptake from aqueous phase by kaolinite: batch sorption and fluorescence studies. RSC Adv. 2016, 6, 84464; https://doi.org/10.1039/c6ra17984c.Search in Google Scholar

31. Pathak, P. N., Choppin, G. R. Effect of complexing anions on europium sorption on suspended silica: a TRLFS study for ternary complex formation. Radiochim. Acta 2007, 95, 267; https://doi.org/10.1524/ract.2007.95.5.267.Search in Google Scholar

32. Mathur, J. N., Cernochova, K., Choppin, G. R. Thermodynamics and laser luminescence spectroscopy of binary and ternary complexation of Am3+, Cm3+ and Eu3+ with citric acid, and citric acid+ EDTA at high ionic strength. Inorg. Chim. Acta. 2007, 360, 1785; https://doi.org/10.1016/j.ica.2006.01.046.Search in Google Scholar

33. Hartmann, E., Baeyens, B., Bradbury, M. H., Geckeis, H., Stumpf, T. A spectroscopic characterization and quantification of M (III)/clay mineral outer-sphere complexes. Environ. Sci. Technol. 2008, 42, 7601; https://doi.org/10.1021/es801092f.Search in Google Scholar PubMed

34. Binnemans, K. Interpretation of Eu(III) spectra. Coord. Chem. Rev. 2015, 295, 1; https://doi.org/10.1016/j.ccr.2015.02.015.Search in Google Scholar

35. Kimura, T., Choppin, G. R., Kato, Y., Yoshida, Z. Determination of the hydration number of Cm (III) in various aqueous solutions. Radiochim. Acta 1996, 72, 61; https://doi.org/10.1524/ract.1996.72.2.61.Search in Google Scholar

36. Heller, A., Barkleit, A., Foerstendorf, H., Tsushima, S., Heim, K., Bernhard, G. Curium(III) citrate speciation in biological systems: a europium(III) assisted spectroscopic and quantum chemical study. Dalton Trans. 2012, 41, 13969; https://doi.org/10.1039/c2dt31480k.Search in Google Scholar PubMed

37. Heller, A., Barkleit, A., Bernhard, G. Chemical speciation of trivalent actinides and lanthanides in biological fluids: the dominant in vitro binding form of curium(III) and europium(III) in human urine. Chem. Res. Toxicol. 2010, 24, 193.10.1021/tx100273gSearch in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material https://doi.org/10.1515/ract-2019-3148.


Received: 2019-03-28
Accepted: 2020-07-31
Published Online: 2020-08-31
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3148/html
Scroll to top button