Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Facilitative priority effects drive parasite assembly under coinfection

Abstract

Host individuals are often coinfected with diverse parasite assemblages, resulting in complex interactions among parasites within hosts. Within hosts, priority effects occur when the infection sequence alters the outcome of interactions among parasites. Yet, the role of host immunity in this process remains poorly understood. We hypothesized that the host response to the first infection could generate priority effects among parasites, altering the assembly of later-arriving strains during epidemics. We tested this by infecting sentinel host genotypes of Plantago lanceolata with strains of the fungal parasite Podosphaera plantaginis and measuring susceptibility to subsequent infection during experimental and natural epidemics. In these experiments, prior infection by one strain often increased susceptibility to other strains, and these facilitative priority effects altered the structure of parasite assemblages, but this effect depended on host genotype, host population and parasite genotype. Thus, host genotype, spatial structure and priority effects among strains all independently altered parasite assembly. Using a fine-scale survey and sampling of infections on wild hosts in several populations, we then identified a signal of facilitative priority effects, which altered parasite assembly during natural epidemics. Together, these results provide evidence that within-host priority effects of early-arriving strains can drive parasite assembly, with implications for how strain diversity is spatially and temporally distributed during epidemics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of key differences and similarities among the three field studies presented in this manuscript.
Fig. 2: Results from the common garden experiment.
Fig. 3: Results from the natural epidemic experiment.
Fig. 4: Results from the wild host survey.

Similar content being viewed by others

Data availability

The data supporting the results are archived on Figshare (https://doi.org/10.6084/m9.figshare.12627806).

Code availability

The code supporting the results is archived on Figshare (https://doi.org/10.6084/m9.figshare.12627806).

References

  1. Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).

    Article  CAS  Google Scholar 

  2. Mideo, N. Parasite adaptations to within-host competition. Trends Parasitol. 25, 261–268 (2009).

    Article  Google Scholar 

  3. Greischar, M. A. et al. Evolutionary consequences of feedbacks between within-host competition and disease control. Evol. Med. Public Health 2020, 30–34 (2020).

    Article  Google Scholar 

  4. Wale, N. et al. Resource limitation prevents the emergence of drug resistance by intensifying within-host competition. Proc. Natl Acad. Sci. USA 114, 13774–13779 (2017).

    Article  CAS  Google Scholar 

  5. Bhattacharya, A., Toro Díaz, V. C., Morran, L. T. & Bashey, F. Evolution of increased virulence is associated with decreased spite in the insect-pathogenic bacterium Xenorhabdus nematophila. Biol. Lett. 15, 20190432 (2019).

    Article  Google Scholar 

  6. Susi, H., Barrès, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).

    Article  CAS  Google Scholar 

  7. Read, A. F. & Taylor, L. H. The ecology of genetically diverse infections. Science 292, 1099–1102 (2001).

    Article  CAS  Google Scholar 

  8. Hawley, D. M. & Altizer, S. M. Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Funct. Ecol. 25, 48–60 (2011).

    Article  Google Scholar 

  9. Hoverman, J. T., Hoye, B. J. & Johnson, P. T. J. Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 173, 1471–1480 (2013).

    Article  Google Scholar 

  10. Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).

    Article  CAS  Google Scholar 

  11. Hellard, E., Fouchet, D., Vavre, F. & Pontier, D. Parasite–parasite interactions in the wild: how to detect them? Trends Parasitol. 31, 640–652 (2015).

    Article  Google Scholar 

  12. Tollenaere, C., Susi, H. & Laine, A. L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21, 80–90 (2015).

    Article  CAS  Google Scholar 

  13. Budischak, S. A. et al. Competing for blood: the ecology of parasite resource competition in human malaria–helminth co-infections. Ecol. Lett. 21, 536–545 (2018).

    Article  Google Scholar 

  14. Griffiths, E. C., Pedersen, A. B., Fenton, A. & Petchey, O. L. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc. R. Soc. B 281, 20132286 (2014).

    Article  Google Scholar 

  15. Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534 (2016).

    Article  CAS  Google Scholar 

  16. Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).

    Article  CAS  Google Scholar 

  17. Chung, E., Petit, E., Antonovics, J., Pedersen, A. B. & Hood, M. E. Variation in resistance to multiple pathogen species: anther smuts of Silene uniflora. Ecol. Evol. 2, 2304–2314 (2012).

    Article  Google Scholar 

  18. Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. A host immune hormone modifies parasite species interactions and epidemics: insights from a field manipulation. Proc. R. Soc. B 285, 20182075 (2018).

    Article  CAS  Google Scholar 

  19. Eswarappa, S. M., Estrela, S. & Brown, S. P. Within-host dynamics of multi-species infections: facilitation, competition and virulence. PLoS ONE 7, e38730 (2012).

    Article  CAS  Google Scholar 

  20. Zélé, F., Magalhães, S., Kéfi, S. & Duncan, A. B. Ecology and evolution of facilitation among symbionts. Nat. Commun. 9, 4869 (2018).

    Article  CAS  Google Scholar 

  21. Jenner, E. An Inquiry into the Causes and Effects of the Variolae Vaccinae, a Disease Discovered in Some of the Western Countries of England, Particularly Gloucestershire, and Known by the Name of “The Cow Pox” (1798) Vol. 84 (R. Lier, 1923).

  22. Fulton, R. W. Practices and precautions in the use of cross protection for plant virus disease control. Annu. Rev. Phytopathol. 24, 67–81 (1986).

    Article  Google Scholar 

  23. Van Loon, L. C. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103, 753–765 (1997).

    Article  Google Scholar 

  24. Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    Article  CAS  Google Scholar 

  25. Pieterse, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).

    Article  CAS  Google Scholar 

  26. Spoel, S. H., Johnson, J. S. & Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl Acad. Sci. USA 104, 18842–18847 (2007).

    Article  CAS  Google Scholar 

  27. Kliebenstein, D. J. & Rowe, H. C. Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction. Plant Sci. 174, 551–556 (2008).

    Article  CAS  Google Scholar 

  28. Koornneef, A. et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147, 1358–1368 (2008).

    Article  CAS  Google Scholar 

  29. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).

    Article  CAS  Google Scholar 

  30. Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: nematode‐induced immune suppression facilitates tuberculosis invasion in African buffalo. Am. Nat. 176, 613–624 (2010).

    Article  Google Scholar 

  31. Clay, P. A., Cortez, M. H., Duffy, M. A. & Rudolf, V. H. W. Priority effects within coinfected hosts can drive unexpected population‐scale patterns of parasite prevalence. Oikos 128, 571–583 (2019).

    Article  Google Scholar 

  32. Clay, P. A., Duffy, M. A. & Rudolf, V. H. W. Within-host priority effects and epidemic timing determine outbreak severity in co-infected populations. Proc. R. Soc. B 287, 20200046 (2020).

    Article  Google Scholar 

  33. Clark, P., Ward, W., Lang, S., Saghbini, A. & Kristan, D. Order of inoculation during Heligmosomoides bakeri and Hymenolepis microstoma coinfection alters parasite life history and host responses. Pathogens 2, 130–152 (2013).

    Article  Google Scholar 

  34. Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article  Google Scholar 

  35. Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).

    Article  Google Scholar 

  36. Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. Interactions among symbionts operate across scales to influence parasite epidemics. Ecol. Lett. 20, 1285–1294 (2017).

    Article  Google Scholar 

  37. Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    Article  CAS  Google Scholar 

  38. Karvonen, A., Jokela, J. & Laine, A.-L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).

    Article  Google Scholar 

  39. Mordecai, E. A., Gross, K. & Mitchell, C. E. Within-host niche differences and fitness trade-offs promote coexistence of plant viruses. Am. Nat. 187, E13–E26 (2016).

    Article  Google Scholar 

  40. Kuris, A. M., Blaustein, A. R. & Alio, J. J. Hosts as islands. Am. Nat. 116, 570–586 (1980).

    Article  Google Scholar 

  41. Rynkiewicz, E. C., Pedersen, A. B. & Fenton, A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol. 31, 212–221 (2015).

    Article  Google Scholar 

  42. Sousa, W. P. Interspecific interactions among larval trematode parasites of freshwater and marine snails. Am. Zool. 32, 583–592 (1992).

    Article  Google Scholar 

  43. Graham, A. L. Ecological rules governing helminth microparasite coinfection. Proc. Natl Acad. Sci. USA 105, 566–570 (2008).

    Article  CAS  Google Scholar 

  44. Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).

    Article  Google Scholar 

  45. Cobey, S. & Lipsitch, M. Pathogen diversity and hidden regimes of apparent competition. Am. Nat. 181, 12–24 (2013).

    Article  Google Scholar 

  46. Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).

    Article  Google Scholar 

  47. Hoeksema, J. D. & Forde, S. E. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171, 275–290 (2008).

    Article  Google Scholar 

  48. Burdon, J. J. & Laine, A.-L. Evolutionary Dynamics of Plant Pathogen Interactions (Cambridge Univ. Press, 2019).

  49. Lambrechts, L., Fellous, S. & Koella, J. C. Coevolutionary interactions between host and parasite genotypes. Trends Parasitol. 22, 12–16 (2006).

    Article  Google Scholar 

  50. Ferro, K. et al. Experimental evolution of immunological specificity. Proc. Natl Acad. Sci. USA 116, 20598–20604 (2019).

    Article  CAS  Google Scholar 

  51. Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B. & Albrectsen, B. R. Defence priming in Arabidopsis—a meta-analysis. Sci. Rep. 9, 13309 (2019).

    Article  CAS  Google Scholar 

  52. Pedersen, A. B. & Fenton, A. Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol. 22, 133–139 (2007).

    Article  Google Scholar 

  53. Pedersen, A. B. & Fenton, A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol. 31, 200–211 (2015).

    Article  Google Scholar 

  54. Laine, A. L. Context-dependent effects of induced resistance under co-infection in a plant–pathogen interaction. Evol. Appl. 4, 696–707 (2011).

    Article  Google Scholar 

  55. Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).

    Article  CAS  Google Scholar 

  56. Douma, J. C., Vermeulen, P. J., Poelman, E. H., Dicke, M. & Anten, N. P. R. When does it pay off to prime for defense? A modeling analysis. N. Phytol. 216, 782–797 (2017).

    Article  CAS  Google Scholar 

  57. Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).

    Article  CAS  Google Scholar 

  58. Budischak, S. A. et al. Resource limitation alters the consequences of co-infection for both hosts and parasites. Int. J. Parasitol. 45, 455–463 (2015).

    Article  Google Scholar 

  59. Borer, E. T., Laine, A.-L. & Seabloom, E. W. A multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54, 397–418 (2016).

    Article  CAS  Google Scholar 

  60. Bushnell, W. R. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 1–12 (APS, 2002).

  61. Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).

    Article  Google Scholar 

  62. Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. Mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Article  Google Scholar 

  63. Benesh, D. P. & Kalbe, M. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly. J. Anim. Ecol. 85, 1004–1013 (2016).

    Article  Google Scholar 

  64. Mucha, J. et al. Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microb. Ecol. 75, 348–363 (2018).

    Article  CAS  Google Scholar 

  65. Chang, A. L., Brown, C. W., Crooks, J. A. & Ruiz, G. M. Dry and wet periods drive rapid shifts in community assembly in an estuarine ecosystem. Glob. Change Biol. 24, e627–e642 (2018).

    Article  Google Scholar 

  66. David, A. S., Seabloom, E. W. & May, G. Disentangling environmental and host sources of fungal endophyte communities in an experimental beachgrass study. Mol. Ecol. 26, 6157–6169 (2017).

    Article  Google Scholar 

  67. Penczykowski, R. M., Parratt, S. R., Barrès, B., Sallinen, S. K. & Laine, A. L. Manipulating host resistance structure reveals impact of pathogen dispersal and environmental heterogeneity on epidemics. Ecology 99, 2853–2863 (2018).

    Article  Google Scholar 

  68. Pieterse, C. M. J. et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).

    Article  CAS  Google Scholar 

  69. Susi, H. & Laine, A.-L. The effectiveness and costs of pathogen resistance strategies in a perennial plant. J. Ecol. 103, 303–315 (2015).

    Article  Google Scholar 

  70. Höckerstedt, L. Evolutionary and Ecological Dimensions of Disease Resistance. PhD dissertation, Univ. of Helsinki (2020); https://helda.helsinki.fi/handle/10138/314983

  71. Macke, E. et al. Diet and genotype of an aquatic invertebrate affect the composition of free-living microbial communities. Front. Microbiol. 11, 380 (2020).

    Article  Google Scholar 

  72. Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).

    Article  CAS  Google Scholar 

  73. Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).

    Article  CAS  Google Scholar 

  74. Biere, A. & Goverse, A. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground. Annu. Rev. Phytopathol. 54, 499–527 (2016).

    Article  CAS  Google Scholar 

  75. Little, T. J., Watt, K. & Ebert, D. Parasite–host specificity: experimental studies on the basis of parasite adaptation. Evolution 60, 31–38 (2006).

    Article  Google Scholar 

  76. Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910 (2020).

    Article  CAS  Google Scholar 

  77. Cui, J. et al. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl Acad. Sci. USA 102, 1791–1796 (2005).

    Article  CAS  Google Scholar 

  78. Mideo, N., Alizon, S. & Day, T. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23, 511–517 (2008).

    Article  Google Scholar 

  79. Pedersen, A. B. & Greives, T. J. The interaction of parasites and resources cause crashes in a wild mouse population. J. Anim. Ecol. 77, 370–377 (2008).

    Article  Google Scholar 

  80. Laine, A.-L., Barrès, B., Numminen, E. & Siren, J. P. Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation. eLife 8, e47091 (2019).

    Article  Google Scholar 

  81. Vaumourin, E. & Laine, A.-L. Role of temperature and coinfection in mediating pathogen life-history traits. Front. Plant Sci. 9, 1670 (2018).

    Article  Google Scholar 

  82. Numminen, E., Vaumourin, E., Parratt, S. R., Poulin, L. & Laine, A.-L. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol. Biol. 19, 142 (2019).

    Article  Google Scholar 

  83. Tack, A. J. M., Thrall, P. H., Barrett, L. G., Burdon, J. J. & Laine, A.-L. Variation in infectivity and aggressiveness in space and time in wild host–pathogen systems: causes and consequences. J. Evol. Biol. 25, 1918–1936 (2012).

    Article  CAS  Google Scholar 

  84. Penczykowski, R. M., Laine, A. L. & Koskella, B. Understanding the ecology and evolution of host–parasite interactions across scales. Evol. Appl. 9, 37–52 (2016).

    Article  Google Scholar 

  85. Rynkiewicz, E. C., Fenton, A. & Pedersen, A. B. Linking community assembly and structure across scales in a wild mouse parasite community. Ecol. Evol. 9, 13752–13763 (2019).

    Article  Google Scholar 

  86. Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    Article  Google Scholar 

  87. Siefert, A. Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 170, 767–775 (2012).

    Article  Google Scholar 

  88. Laughlin, D. C. et al. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299 (2012).

    Article  Google Scholar 

  89. Shaw, D. J. & Dobson, A. P. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111–S133 (1995).

    Article  Google Scholar 

  90. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    Article  CAS  Google Scholar 

  91. Sagar, G. R. & Harper, J. L. Plantago major L., P. media L. and P. lanceolata. J. Ecol. 52, 189–221 (1964).

    Article  Google Scholar 

  92. Ross, M. D. Inheritance of self-incompatibility in Plantago lanceolata. Heredity (Edinb.) 30, 169–176 (1973).

    Article  Google Scholar 

  93. Ojanen, S. P., Nieminen, M., Meyke, E., Pöyry, J. & Hanski, I. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3, 3713–3737 (2013).

    Article  Google Scholar 

  94. Tollenaere, C. & Laine, A. L. Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects. J. Evol. Biol. 26, 1716–1726 (2013).

    Article  CAS  Google Scholar 

  95. Tack, A. & Laine, A. Ecological and evolutionary implications of spatial heterogeneity during the off‐season for a wild plant pathogen. N. Phytol. 65, 297–308 (2014).

    Article  Google Scholar 

  96. Laine, A. L. & Hanski, I. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94, 217–226 (2006).

    Article  Google Scholar 

  97. Jousimo, J. et al. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).

    Article  CAS  Google Scholar 

  98. Laine, A. L. Resistance variation within and among host populations in a plant-pathogen metapopulation: implications for regional pathogen dynamics. J. Ecol. 92, 990–1000 (2004).

    Article  Google Scholar 

  99. Penczykowski, R. M., Walker, E., Soubeyrand, S. & Laine, A.-L. Linking winter conditions to regional disease dynamics in a wild plant-pathogen metapopulation. N. Phytol. 205, 1142–1152 (2015).

    Article  Google Scholar 

  100. Laine, A. L. Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant–pathogen association. J. Evol. Biol. 20, 2371–2378 (2007).

    Article  Google Scholar 

  101. Tollenaere, C. et al. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS ONE 7, e52492 (2012).

    Article  CAS  Google Scholar 

  102. Nicot, P. C., Bardin, M. & Dik, A. J. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 83–99 (APS, 2002).

  103. Parratt, S. R., Barrès, B., Penczykowski, R. M. & Laine, A.-L. Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory. Mol. Ecol. 26, 1964–1979 (2017).

    Article  CAS  Google Scholar 

  104. R: A Language and Environment for Statistical Computing v.3.5.2 (R Core Team, 2015); https://doi.org/10.1007/978-3-540-74686-7

  105. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

  106. Lenth, R. et al. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.3 (2018).

  107. Hui, F. K. C. boral—Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 7, 744–750 (2016).

    Article  Google Scholar 

  108. Bedward, M. ggboral: View BORAL model results with ggplot. R package version 0.1.6 (2019).

  109. Ploner, M. & Heinze, G. coxphf: Cox regression with Firth’s penalized likelihood. R package version 1.13 (2015).

Download references

Acknowledgements

We thank P. Hyttinen, S. Neggazi, M. Kirjokangas and S. Sallinen for assistance with field and lab work. We thank J. Loehr and other staff at the Lammi Biological Station for facilitating the common garden experiment. We also thank the Nåtö Biological Station for housing in Åland. We thank K. Raveala, S. Parratt and A. Sims for additional assistance, including the processing of genetic samples. The Institute of Biotechnology and Institute for Molecular Medicine at the University of Helsinki are acknowledged for carrying out the DNA extractions and for genotyping samples, respectively. This work was supported by the University of Zürich and by grants from the Academy of Finland (no. 296686) to A.-L.L. and the European Research Council (Consolidator Grant RESISTANCE 724508) to A.-L.L.

Author information

Authors and Affiliations

Authors

Contributions

R.M.P. and A.-L.L. designed and implemented the experiments. B.B. conducted the wild host survey. J.L.E. compiled the wild host survey data. E.N. and R.M.P. resolved the parasite multilocus genotypes. F.W.H. analysed the data and wrote the first draft. All authors contributed substantially to revising the manuscript.

Corresponding authors

Correspondence to Fletcher W. Halliday or Rachel M. Penczykowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Results from the natural epidemic experiment.

The effect of the priming treatment on a) infection severity; b) infection severity among infected hosts only. Plants were primed either 8 days (treatment P1) or 4 days (treatment P2) prior to being placed into the field. There were also C1 and C2 control plants set up at the same time (but mock inoculated). Filled points are model-estimated means, error bars are model-estimated 95% confidence intervals, and open points show the raw data. Panels are different host populations, and colors are different host genotypes. There was a significant three-way interaction in the model of infection severity. The reduced model of infection severity among infected hosts included significant two-way interactions between population and host genotype and between host genotype and experimental treatment.

Extended Data Fig. 2 Results from an unconstrained ordination of the natural epidemic experiment, showing the effect of the priming treatment on the composition of strain assemblages within hosts.

Control hosts (C1, C2) and primed hosts (P1, P2), are shown in black, and blue, respectively. Columns are different host populations, and rows are different experimental host genotypes.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Tables 1–9.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halliday, F.W., Penczykowski, R.M., Barrès, B. et al. Facilitative priority effects drive parasite assembly under coinfection. Nat Ecol Evol 4, 1510–1521 (2020). https://doi.org/10.1038/s41559-020-01289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01289-9

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene