Skip to main content
Log in

Some Estimates of the Stress–Strain State of the Earth’s Crust of the Russian Platform

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

Based on literature data and original constructions of the focal mechanisms of earthquakes within the Romashkinskaya seismically active zone of the Tatar Arch for 1992–1995, additional information was obtained on the nature of the stress–strain state in the central Russian Platform, which is a “white spot” on the well-known world stress maps (WSM). Predominant subhorizontal uniaxial compression in the southeast–northwest direction is established, which is agrees well with the observed regional maximum horizontal stress field SHmax in Western Europe. As one of the possible reasons for this orientation of this compression, along with a plate tectonics interpretation, a system of planetary tectonic fracturing of rock material is proposed. This fracturing, in light of the ideas obtained here on the nature of the stress–strain state of the crust, can be understood as numerous planes of thrust and shear dislocations that formed during deformation of crustal material under horizontal compression in the indicated direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Aleinikov, A.L., Borovikov, V.F., Zubkov, A.V., and Kholevin, N.I., Geodynamics of the Urals from the data of real-scale and model studies, Geol. Geofiz., 1977, no. 2, pp. 156–158.

  2. Beloborodov, D.E. and Tveritinova, T.Yu., Stress and strain fields of the East European Plate, Tezisy nauchnoi konferentsii “Lomonosovskie chteniya” (Abstracts of the “Lomonosov Readings” Scientific Conference), Moscow, Russia, 2004, Moscow: Mosk. Gos. Univ., 2004.

    Google Scholar 

  3. Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F., Baumgartner, J., Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength, J. Geophys. Res.: Solid Earth, 1997, vol. 102, pp. 18453–18475.

    Article  Google Scholar 

  4. Gamkrelidze, I.P., Planetary-scale fracturing of dislocated strata and phenomena associated to it, Geotektonika, 1972, no. 6, pp. 45–54.

  5. Gzovskii, M.V., Turchaninov, I.A., Markov, G.A., et al., Stress state of the Earth’s crust inferred from measurements in mine workings and tectonic analysis, in Napryazhennoe sostoyanie zemnoi kory (po izmereniyam v massivakh gornykh porod) (Stress State of the Earth’s Crust from Measurements in Rock Massifs), Kropotkin, P.N., Ed., Moscow: Nauka, 1973, pp. 32–49.

  6. Hast, N., The state of stress in the upper part of the Earth’s crust, Tectonophysics, 1969, vol. 8, no. 3, pp. 169–211.

    Article  Google Scholar 

  7. Hast, N., The state of stress in the upper part of the Earth`s crust as determined by measurements of absolute rock stress, Naturwissenschaften, 1974, vol. 61, no. 11, pp. 468–475.

    Article  Google Scholar 

  8. Heidbach, O. and Höhne, J., CASMI – a tool for the visualization of the World Stress Map data base, Comput. Geosci., 2008, vol. 34, pp. 783–791. https://doi.org/10.1016/j.cageo.2007.06.004

    Article  Google Scholar 

  9. Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K., and Wenzel, F., Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database, Tectonics, 2007, vol. 26, no. 6. https://doi.org/10.1029/2007TC002133

  10. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeb, D., and Müller, B., Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, 2010, vol. 482, nos. 1–4, pp. 3–15. https://doi.org/10.1016/j.tecto.2009.07.023

    Article  Google Scholar 

  11. Heidbach, O., Rajabi, M., Reiter, K., and Ziegler, M., World Stress Map Database Release 2016, Potsdam: GFZ Data Services, 2016. https://doi.org/10.5880/WSM.2016.001

  12. Heidbach, O., Custodio, S., Kingdon, A., Mariucci, M.T., Montone, P., Müller, B., Pierdominici, S., Rajabi, M., Reinecker, J., Reiter, K., Tingay, M., Williams, J., and Ziegler, M., Stress Map of the Mediterranean and Central Europe 2016, Potsdam: GFZ Data Service, 2016. https://doi.org/10.5880/WSM.Europe2016

  13. Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M.L., and Zoback, M.D., The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 2018, vol. 744, pp. 484–498.

    Article  Google Scholar 

  14. Katterfel’d, G.I. and Charushin, G.V., Global-scale fracturing of the Earth and other planets, Geotektonika, 1960, no. 6, pp. 3–11.

  15. Katterfel’d, G.I. and Charushin, G.V., The regional criterion of distinguishing the systems of planetary-scale fractures, in Davleniya i mekhanicheskie napryazheniya v razvitii sostava, struktury i rel’efa litosfery (Pressures and Mechanical Stresses in Development of Composition, Structure, and Relief of the Lithosphere), Leningrad: Nedra, 1969.

  16. Katterfel’d, G.I. and Charushin, G.V., The regional criterion of distinguishing the systems of planetary-scale fractures, in Geodinamika, magmatizm i minerageniya kontinental’nykh okrain Severa Patsifiki: Materialy Vserossiiskogo soveshchaniya (“Geodynamics, Magmatism, and Minerageny of Continental Margins of the North Pacific,” Proceedings of the All-Russian Meeting), Magadan, 2003, vol. I, pp. 55–57.

  17. Khain, V.E. and Lomize, M.G., Geotektonika s osnovami geodinamiki (Geotectonics with Fundamentals of Geodynamics), Moscow: Knizhnyi dom Universitet, 2010.

  18. Kingdon, A., Fellgett, M.W., and Williams, D.O., Use of borehole imaging to improve understanding of the in-situ stress orientation of Central and Northern England and its implications for unconventional hydrocarbon resources, Mar. Pet. Geol., 2016, vol. 73, pp. 1–20. https://doi.org/10.1016/j.marpetgeo.2016.02.012

    Article  Google Scholar 

  19. Korchemagin, V.A., Geological structure and stress fields with respect to the evolution the evolution of endogenous regimes in Donbass, Extended Abstract of the Doctoral (Geol.-Mineral.) Dissertation, Moscow, 1984.

  20. Korchemagin, V.A. and Emets, V.S., Peculiarities of tectonic structure and stress field development in the Donbass and East Azov region, Geotektonika, 1987, no. 3, pp. 41–57.

  21. Kropotkin, P.N., The results of stress state measurements in rocks of Scandinavia, West Europe, Iceland, Africa, and North America, in Napryazhennoe sostoyanie zemnoi kory (po izmereniyam v massivakh gornykh porod) (Stress State of the Earth’s Crust from Measurements in Rock Massifs), Kropotkin, P.N., Ed., Moscow: Nauka, pp. 158–167.

  22. Kropotkin, P.N., The theory of plate tectonics and its implications to geodetic measurements, Priroda, 1992, no. 7, pp. 42–43.

  23. Kropotkin, P.N. and Efremov, V.N., New proofs of the plate tectonic theory, Geotectonics, 1994, vol. 28, no. 1, pp. 13–19.

    Google Scholar 

  24. Kropotkin, P.N. and Makeev, V.M., Sovremennoe napryazhennoe sostoyanie zemnoi kory. Sovremennaya geotektonicheskaya aktivnost’ Zemli i seismichnost’ (Modern Stress State of the Earth’s Crust: Contemporary Geotectonic Activity and Seismicity of the Earth), Moscow: Nauka, 1987, pp. 192–206.

  25. Kropotkin, P.N., Efremov, V.I., and Makeev, V.M., Stress state of the Earth’s Crust and geodynamics, Geotektonika, 1987, no. 1, pp. 3–24.

  26. Leonov, Yu.G., Gushchenko, O.I., Kopp, M.L., and Rastsvetaev, L.M., Relationship between the Late Cenozoic stresses and deformations in the Caucasian Sector of the Alpine Belt and its northern foreland, Geotectonics, 2001, vol. 35, no. 1, pp. 30–50.

    Google Scholar 

  27. Lukk, A.A., Seismic fracturing, erosional network, and stress-strain state of the Garm area, Izv. Akad. Nauk SSSR.Fiz. Zemli, 1980, no. 3, pp. 18–29.

  28. Lukk, A.A. and Yunga, S.L., Stress-strain state of the Earth’s crust in the Garm area. Pt. I. General problems and study methods, Izv. Akad. Nauk SSSR.Fiz. Zemli, 1988a, no. 6, pp. 14–26.

  29. Lukk, A.A. and Yunga, S.L., Stress-strain state of the Earth’s crust in the Garm area. Pt. II. Reconstruction results, Izv. Akad. Nauk SSSR.Fiz. Zemli, 1988b, no. 7, pp. 10–23.

  30. Lukk, A.A. and Yunga, S.L., Geodinamika i napryazhenno-deformirovannoe sostoyanie litosfery Srednei Azii (Geodynamics and Stress-Strain State of the Lithosphere in Central Asia), Dushanbe: Donish, 1988c.

  31. Lund, B. and Zoback, M.D., Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield, Int. J. Rock Mech. Min. Sci., 1999, vol. 36, pp. 169–190.

    Article  Google Scholar 

  32. Markov, G.A., Tektonicheskie napryazheniya i gornoe davlenie v rudnikakh Khibinskogo massiva (Tectonic Stresses and Rock Pressure in Mines of the Khibiny Massif), Leningrad: Nauka, 1977.

  33. Markov, G.A., Bistribution of horizontal tectonic stresses near the surface within the zones of crustal uplifts, Inzh. Geol., 1980, no. 1, pp. 20–30.

  34. Montone, P. and Mariucci, M.T., The new release of the Italian contemporary stress map, Geophys. J. Int., 2016, vol. 205, pp. 1525–1531. https://doi.org/10.1093/gji/ggw100

    Article  Google Scholar 

  35. Müller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., and Ljunggren, C., Regional patterns of tectonic stress in Europe, J. Geophys. Res.: Solid Earth, 1992, vol. 97, no. B8, pp. 11783–11803. https://doi.org/10.1029/91JB01096

    Article  Google Scholar 

  36. Rautian, T.G., Attenuation of seismic waves and energy of earthquakes, Tr. Inst. Seismostoik. Stroit. Seismol. Akad. Nauk. Tadzh. SSR., 1960, vol. 7, pp. 41–86.

    Google Scholar 

  37. Reiter, K., Heidbach, O., Müller, B., Reinecker, J., and Röckel, T., Stress Map Germany 2016, Potsdam: GFZ Data Services, 2016. https://doi.org/10.5880/WSM.Germany2016_en

  38. Roth, F. and Fleckenstein, P., Stress orientations found in North-East Germany differ from the West European trend, Terra Nova, 2001, vol. 13, pp. 289–296.

    Article  Google Scholar 

  39. Shul’ts, S.S., Fractures and tectonic dislocations of the planetary scale, Geotektonika, 1971, no. 4, pp. 6–14.

  40. Shul’ts, S.S., Fracturing of the planetary scale, in Planetarnaya treshchinovatost’ (Fracturing of the Planetary Scale), Leningrad: Leningrad. Gos. Univ., 1973, pp. 5–37.

  41. Sperner, B., Müller, B., Heidbach, O., Delvaux, D., Heidbach, O., and Fuchs, K., Tectonic stress in the Earth’s crust: Advances in the World Stress Map project, in New Insights into Structural Interpretation and Modelling, vol. 212 of Geol. Soc. London, Spec. Publ., Nieuwland, D.A., Ed., 2003, pp. 101–116.

  42. Stepanov, V.P. and Gatiyatullin, N.S., Volga–Kama nappe and thrust structure of the Phanerozoic cover in Tatarstan: Zone of stress-strain state of the Earth’s crust, Pervyi mezhdunarodnyi seminar “Napryazheniya v litosfere.” Tezisy dokladov (Abstracts of the First International Seminar “Stresses in the Lithosphere”), Moscow, Russia, 1994, Moscow, 1994, pp. 178–179.

  43. Stepanov, V.P., Mirzoev, K.M., Muslimov, R.Kh., Gatiyatiullin, N.S., and Tarasov, E.A, Geologic-geophysical validation of seismogenic zones in Tatarstan, Nedra Povolzh’ya Prikaspiya, 1996, no. 13, pp. 67–73.

  44. Vlokh, N.P., Sashurin, A.D., and Zubkov, A.V., Stress state of rocks at ore deposits of the Urals, in Napryazhennoe sostoyanie zemnoi kory (po izmereniyam v massivakh gornykh porod) (Stress State of the Earth’s Crust from Measurements in Rock Massifs), Kropotkin, P.N., Ed., Moscow: Nauka, 1973, pp. 87–106.

  45. Vlokh, N.P., Aleinikov, A.L., Zubkov, A.V., and Lipin, Ya.I., Some peculiarities of the regional elastic stress field of the Earth’s crust in the Urals, in Gornoe davlenie, metody upravleniya i kontrolya (Rock Pressure: Control Methods), Frunze: Ilim, 1979, pp. 60–70.

  46. Williams, J.D.O., Fellgett, M.W., Kingdon, A., and Williamson, J.P., In-situ stress orientation in the UK Southern North Sea: Regional trends, deviations and detachment of the post-Zechstein stress field, Mar. Pet. Geol., 2015, vol. 67, pp. 769–784. https://doi.org/10.1016/j.marpetgeo.2015.06.008

    Article  Google Scholar 

  47. Yunga, S.L., On the deformation mechanism of a seismoactive volume of the Earth’s crust, Izv. Akad. Nauk SSSR.Fiz. Zemli, 1979, no. 10, pp. 14–23.

  48. Yunga, S.L., Metody i rezul’taty izucheniya seismotektonicheskikh deformatsii (Study Methods and Results of Seismotectonic Deformations), Moscow: Nauka, 1990.

  49. Zamesov, N.F. and Dzema, I.I., Prognozirovanie iskhodnykh polei napryazhenii v rudnykh mestorozhdeniyakh (Prediction of Initial Stress Fields in Ore Deposits), Moscow: Inst. Probl. Kompl. Osvoeniya Nedr Akad. Nauk SSSR, 1987.

  50. Zang, A., Stephansson, O., Heidbach, O., and Janouschkowetz, S., World stress map data base as a resource for rock mechanics and rock engineering, Geotech. Geol. Eng., 2012, vol. 30, no. 3, pp. 625–646. https://doi.org/10.1007/s10706-012-9505-6

    Article  Google Scholar 

  51. Zoback, M.L., First- and second-order patterns of stress in the lithosphere: The world stress map project, J. Geophys. Res.: Solid Earth, 1992, vol. 97, no. B8, pp. 11703–11728.

    Article  Google Scholar 

  52. Zoback, M.L., Zoback, M.D., Adams, J., Assumpção, M., Bell, S., Bergman, E.A., Blümling, P., Brereton, N.R., Denham, D., Ding, J., Fuchs, K., Gay, N., Gregersen, S., Gupta, H.K., Gvishiani, A., et al., Global patterns of tectonic stress, Nature, 1989, vol. 341, pp. 291–298. https://doi.org/10.1038/341291a0.h

    Article  Google Scholar 

  53. Zoback, M.D., Apel, R., Baumgartner, J., Brudy, M., Emmermann, R., Engeser, B., Fuchs, K., Kessel, W., Rischmuller, H., Rummel, F., and Vernik, L., Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole, Nature, 1993, vol. 365, pp. 633–635.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank their colleague Sergey Lvovich Yunga, the main initiator of this work, who departed several years ago, much before his time.

Funding

The study was carried out according to project no. 0144-2019-0011 of the state task of IPE RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lukk.

Ethics declarations

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukk, A.A., Mirzoev, K.M. Some Estimates of the Stress–Strain State of the Earth’s Crust of the Russian Platform. Seism. Instr. 56, 450–467 (2020). https://doi.org/10.3103/S0747923920040064

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923920040064

Keywords:

Navigation