Skip to main content
Log in

Identification of the Seismogenic Structure in the Area of Chupa (North Karelia) and Parameterization of Paleoearthquakes in the Kandalaksha Graben Region

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

In the area of the village of Chupa, three isolated ranges of paleoseismic dislocations were revealed, marking a NW-trending linear seismogenic structure and a total length of more than 14 km . The dislocations are young tectonic ditches and fissures, mainly trending NW, mass displacements of blocks, including against the slope, disarrayed stones, and seismic landslides. Using the nature of the distribution of seismic dislocations for two areas, isoseismic maps were constructed, which made it possible to estimate the magnitudes of paleoseismic events using the macroseismic technique. They amounted to 3.7 and 2.9, respectively, with a focal depth of H ≤ 1 km under the assumption that each range corresponds to a local seismic source. The isolated character of the distribution of the identified ranges may be associated with another, more severe paleoearthquake, traces of which have been preserved mainly in elevated areas of the relief (above 80 m). In the Early Holocene, these sites were separate islands, since the formation conditions for dislocations were limited to subaquatic spaces. For this variant, M = 5.5 and H = 5 km were calculated; the age of the event is the Early Holocene. The results, taking into account data on the micrograben of the Great Salma Strait, indicate the periodic occurrence of coastal and mainland faults, subparallel to the axis of the Kandalaksha graben, as well as Holocene shallow-focus earthquakes of medium magnitude with an epicentral intensity up to I = VIII on the ESI-2007 scale. A catalog of postglacial paleoearthquakes of the Kandalaksha graben region has been compiled (5 events), which can be used to construct earthquake recurrence graphs. This will make it possible to substantially refine the seismic regime of this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. GOST R 57546-2017 Earthquakes. Seismic intensity scale.

REFERENCES

  1. Aptikaev, F.F., State Standard project: Earthquakes. Seismic intensity scale, XI Rossiiskaya natsional’naya konferentsiya po seismostoikomu stroitel’stvu i seismicheskomu raionirovaniyu (XI Russian National Conference on Seismic Engineering and Seismic Zonation), Sochi, Russia, 2015, Moscow, 2015, pp. 15–19.

  2. Aptikaev, F.F. and Erteleva, O.O., A new generation Russian seismic scale, Seism. Instrum., 2017, vol. 53, no. 2, pp. 146–154.

    Article  Google Scholar 

  3. Assinovskaya, B.A., Focal mechanisms of earthquakes in the northeastern Baltic Shield, Fiz. Zemli, 1986, no. 1, pp. 101–105.

  4. Assinovskaya, B.A. and Nikonov, A.A., Aggregated earthquake catalog of the Karelian region for 1542–2003, in Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of the Karelian Region and Its Framing), Sharov, N.V., Ed., Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2004, pp. 218–222.

  5. Baranskaya, A.V., Romanenko, F.A., Analysis of the lineament structure of the Karelian coast, White Sea, for determining peculiarities of the neotectonic evolution, in Materialy III Mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh i spetsialistov pamyati akademika A.P. Karpinskogo (Proceedings of the III International Research and Practice Conference for Young Scientists and Specialists in Memory of A.P. Karpinsky), St. Petersburg, Russia, 2015, St. Petersburg: VSEGEI, 2013, pp. 12–16.

  6. Bederke, E., The development of European rifts, in The World Rift System, No. 66-14 of Geol. Surv. Can. Pap., Irvin, T.N., Ed., 1966, pp. 213–219.

  7. Biske, Yu.S., Sumareva, I.V., and Shitov, M.V., Late Holocene seismic event in the southeastern Lake Ladoga region. Pt. I. Study principles and deformation signatures, Vestn. Sankt-Peterb.Univ., Ser. 7, 2009, vol. 1, pp. 3–25.

    Google Scholar 

  8. Bogdanov, N.A., Continental margins: General problems of structure and tectonic evolution, in Fundamental’nye problemy obshchei tektoniki (Fundamental Problems of General Tectonics), Moscow: Nauchnyi mir, 2001, pp. 231–249.

  9. Drumya, A.V. and Shebalin, N.V., Zemletryasenie: gde, kogda, pochemu? (Earthquake: Where, When, and Why?), Kishenev: Shtintsa, 1985.

  10. Erteleva, O.O., Sidorin, A.Ya., Sokolova, E.Yu., Lukk, A.A., Nikonov, A.A., Aptikaev, F.F., and Shvarev, S.V., Methods for assessing the seismic hazard of stable continental areas using combined paleoseismological and geophysical data, Seism. Instrum., 2019, vol. 55, no. 4, pp. 464–485. https://doi.org/10.3103/S0747923919040078

    Article  Google Scholar 

  11. Evzerov, V.Ya., Vinogradov, A.N., and Nikolaeva, S.B., Geodynamics of the White Sea basin during the Holocene, Vestn. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, 2014, no. 2, pp. 51–58.

  12. Gmyrya, L.B., Korzhenkov, A.M., Ovsyuchenko, A.N., Larkov, A.S., and Rogozhin, E.A., Probable paleoseismic deformations at the Rubas archeological site, mid-6th century AD, South Dagestan, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 10, pp. 1547–1558. https://doi.org/10.1134/S0001433819100037

    Article  Google Scholar 

  13. Gorbatov, E.S. and Kolesnikov, S.F., Deformation signatures in glaciolacustrine deposits of Khibiny Mountains and assessment of their seismogenic character, Vopr. Inzh. Seismol., 2016, vol. 43, no. 3, pp. 5–17. https://doi.org/10.21455/VIS2016.3-1

    Article  Google Scholar 

  14. Gorbatov, E.S. and Sorokin, A.A., Strong Holocene paleoearthquakes on the Karelian coast of the White Sea and peculiarities of their geomorphic expression, Sovrem. Probl. Mekh., 2018a, vol. 33, no. 3, pp. 186–196.

    Google Scholar 

  15. Gorbatov, E.S. and Sorokin, A.A., Parameters of seismic influences during the formation of postglacial dislocations in the rocky massifs of the Karelian Coast of the White Sea, in “Lateglacial–Interglacial Transitions: Glaciotectonic, Seismoactivity, Catastrophic Hydrographic and Landscape Changes,” INQUA Peribaltic Working Group Meeting and Excursion 2018, International Scientific Conference and School for Young Scientists, Petrozavodsk, Russia, 2018, Petrozavodsk: Karel. Res. Centre Russ. Acad. Sci., 2018b, pp. 69–71.

  16. Gorbatov, E.S., Kolesnikov, S.F., and Sorokin, A.A., Disturbed stratification in Lae Pleistocene sediments of the Khibiny pluton (Kola Peninsula), Russ. Geol. Geophys., 2019, vol. 60, no. 5, pp. 542–557.

    Google Scholar 

  17. Gorbatov, E.S., Sorokin, A.A., Marakhanov, A.V., and Lar’kov, A.S., Results of comprehensive paleoseismological studies in the Kindo Peninsula area (Karelian coast of the White Sea), Vopr. Inzh. Seismol., 2017, vol. 44, no. 3, pp. 5–24. https://doi.org/10.21455/VIS2017.3-1

    Article  Google Scholar 

  18. Kol’ka, V.V., Korsakova, O.P., Shelekhova, T.S., Tolstobrova, A.N., Reconstruction of the White Sea relative level in the late glacial and Holocene from the data of lithologic and diatom analyses, and radiocarbon dating of bottom sediments of small lakes in the Chupa settlement area (northern Karelia), Vestn. Murmansk. Gos. Tekh. Univ., 2015, vol. 18, no. 2, pp. 255–268.

  19. Korzhenkov, A.M. and Mazor, E., Structural reconstruction of seismic events: Ruins of ancient buildings as fossil seismographs, Izv. Minist. Obraz. Nauki Resp. Kaz., Nats. Akad. Nauk Resp. Kaz., Ser. Obshchestv. Nauk, 2001, no. 1, pp. 108–125.

  20. Korzhenkov, A.M., Usmanova, M.T., Anarbaev, A.A., Maksudov, F.A., Murodaliev, R.Kh., Zakhidov, T.K., and Rakhmanov, Z.O., Underestimated seismic hazard of the Ferghana Depression: New archeoseismological data, Izv., Atmos. Oceanic Phys., 2019a, vol. 55, no. 10, pp. 1536–1546. https://doi.org/10.1134/S0001433819100062

    Article  Google Scholar 

  21. Korzhenkov, A.M., Novichikhin, A.M., Ovsyuchenko, A.N., Rangelov, B.K., Rogozhin, E.A., Dimitrov, O.V., Larkov, A.S., Liu, J., Search for traces of strong ancient earthquakes in the Western Caucasus: Archeoseismological studies in ancient Gorgippia, Izv., Atmos. Oceanic Phys., 2019b, vol. 55, no. 11, pp. 1680−1698. https://doi.org/10.1134/S0001433819110069

    Article  Google Scholar 

  22. Kosevich, N.I. and Romanovskaya, M.A., The relationship between the lineaments and tectonics of the Kandalaksha Gulf in the White Sea, Moscow Univ. Geol. Bull., 2014, vol. 69, no. 4, pp. 206–212.

    Article  Google Scholar 

  23. Lagerbäck, R., Late Quaternary faulting and paleoseismicity in Northern Fennoscandia, with particular reference to the Lansjärv area, Northern Sweden, Geol. Foeren. Stockholm Foerh., 1990, vol. 112, no. 4, pp. 333–354.

    Article  Google Scholar 

  24. Lukk, A.A. and Sidorin, A.Ya., On the problem of accounting for paleoearthquakes when evaluating the seismic hazard of Fennoscandia, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 11, pp. 1669−1714. https://doi.org/10.1134/S0001433819110112

    Article  Google Scholar 

  25. Lukk, A.A., Leonova, V.G., and Sidorin, A.Ya., Revisiting the origin of seismicity in Fennoscandia, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 7, pp. 743−758. https://doi.org/10.1134/S000143381907003X

    Article  Google Scholar 

  26. Lukashov, A.D., Recent geodynamics, in Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of the Karelian Region and Its Framing), Sharov, N.V., Ed., Petrozavodsk: Karel. Nauchn. Tsentr Ross. Akad. Nauk, 2004, pp. 150–191.

  27. Lunina, O.V., The influence of lithosphere’s stress state on relationships between parameters of seismogenic ruptures and earthquake magnitudes, Geol. Geofiz., 2001, vol. 42, no. 9, pp. 1389–1398.

    Google Scholar 

  28. Maev, E.G., Saf’yanov, G.A., Frol’, V.V., and Zverev, A.S., Sediment thickness and bedrock topography of the Great Salma Strait, White Sea, Geomorfologiya, 2010, no. 1, pp. 59–67.

  29. Marakhanov, A.V. and Romanenko, F.A., New data on postglacial seismodislocations of Northern Karelia (Karelian coast of the White Sea), in Yudakhinskie chteniyaGeodinamika i ekologiya Barents-regiona v XXI v.,” Materialy dokladov Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (“Geodynamics and Ecology of the Barents Sea Region in the 21st Century,” Proceedings of the All-Russia Conference with International Participants in Memory of F.N. Yudakhin), Arkhangelsk, Russia, 2014, Arkhangelsk: Arkhangel’sk. Nauchn. Tsentr Ural. Otd. Ross. Akad. Nauk, 2014, pp. 137–140.

  30. Michetti, A.M., Esposito, E., Gürpinar, A., Mohammadioun, B., Porfido, S., Rogozhin, E., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Comerc, B., Marco, S., McCalpin, J., and Mörner, N.A., The INQUA Scale. An Innovative Approach for Assessing Earthquake Intensities Based on Seismically-Induced Ground Effects in Natural Environment, vol. 67 of Mem. Descr. Carta Geol. Ital., 2004.

  31. Mörner, N.-A., Paleoseismicity of Sweden. A Novel Paradigm (Stockholm, 2003).

  32. Mörner, N.-A., Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and second effects, Tectonophysics, 2004, vol. 380, nos. 3–4, pp. 139–157.

    Article  Google Scholar 

  33. Nikiforov, C.L., Koshel’, S.M., and Frol’, V.V., Digital model of the White Sea bottom topography, Vestn. Mosk. Gos. Univ., Ser. 5: Geogr., 2012, no. 3, pp. 86–92.

  34. Nikolaeva, S.B., Paleoseismic evidence in the northeastern Kola Peninsula, Geomorfologiya, 2001, no. 4, pp. 66–74.

  35. Nikolaeva, S.B., Nikonov, A.A., Shvarev, S.V., and Rodkin, M.V., Comprehensive paleoseismic geological studies in a key site in southwestern Kola Peninsula (Northeast of the Fennoscandian Shield), Dokl. Earth Sci., 2016, vol. 469, no. 1, pp. 656–660.

    Article  Google Scholar 

  36. Nikonov, A.A., On limit seismic accelerations, Dokl. Akad. Nauk SSSR, 1992, vol. 323, no. 1, pp. 70–73.

    Google Scholar 

  37. Nikonov, A.A., Indications of earthquakes in The Kalevala and documented real earthquakes in Karelia, Priroda, 2004, no. 8, pp. 25–31.

  38. Nikonov, A.A., Shvarev, S.V., Sim, L.A., Rodkin, M.V., Biske, Yu.S., and Marinin, A.V., Paleoseismodeformations of hard rocks in the Karelian isthmus, Dokl. Earth Sci., 2014, vol. 457, no. 2, pp. 1008–1013.

    Article  Google Scholar 

  39. Ovsyuchenko, A.N., Korzhenkov, A.M., Larkov, A.S., Rogozhin, E.A., and Marahanov, A.V., Estimation of seismic hazards of low-active areas: Case study of Kerch–Taman region, Seism. Instrum., 2018, vol. 54, no. 5, pp. 565−572. https://doi.org/10.3103/S0747923918050109

    Article  Google Scholar 

  40. Paleoseismology, McCalpin, J.P., Ed., San Diego: Academic, 1996.

  41. Panasenko, G.D., Seismicheskie osobennosti Severo-Vostoka Baltiiskogo shchita (Seismic Peculiarities of the Northeastern Baltic Shield), Leningrad: Nauka, 1969.

  42. Panasenko, G.D., Baltic Shield, 1626–1979, in Novyi katalog zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g. (New Catalog of Earthquake in USSR from Ancient Times trough 1975), Kondorskaya, N.V., and Shebalin, N.V., Eds., Moscow: Nauka, 1977, pp. 460–464.

  43. Panasenko, G.D., Seismicity of the eastern Baltic Shield, in Seismichnost’ i sovremennye dvizheniya zemnoi kory vostochnoi chasti Baltiiskogo shchita (Seismicity and Recent Crustal Movements in the Eastern Baltic Shield), Apatity: Geol. Inst. Kol’sk. Fil. Akad. Nauk. SSSR, 1980, pp. 7–24.

  44. Rogozhin, E.A., Gorbatikov, A.V., Stepanova, M.Yu., Kharazova, Yu.V., Dimitrov, O.V., Korzhenkov, A.M., Strelnikov, A.A., Holocenic geological and seismic activity of the fault system in northeastern Bulgaria by the complex of geological-geomorphological and archeoseismological methods, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 7, pp. 846−859. https://doi.org/10.1134/S0001433819080085

    Article  Google Scholar 

  45. Rodkin, M.V., Nikonov, A.A., and Shvarev, S.V., Estimation of seismic effect from displacements and offsets in hard rock massifs, Geodin. Tektonofiz., 2012, no. 3, pp. 203–237.

  46. Rodkin, M.V., Korzhenkov, A.M., and Orunbaev, S.Zh., Evaluation of maximum mass velocities in source zones of strong earthquakes from displacements of hard rock units: Case study of some areas in Kirgizia, Vopr. Inzh. Seismol., 2015, vol. 42, no. 4, pp. 25–36.

    Google Scholar 

  47. Romanenko, F.A. and Shilova, O.S., The postglacial uplift of the Karelian Coast of the White Sea according to radiocarbon and diatom analyses of lacustrine-boggy deposits of Kindo Peninsula, Dokl. Earth Sci., 2012, vol. 442, no. 1, pp. 242–246.

    Article  Google Scholar 

  48. Rybalko, A.E., Tokarev, M.Yu., Fedorova, N.K., and Nikitin, M.A., New data on the geology and geomorphology of the Kandalaksha Gulf from high-frequency seismoacoustic profiling and geological sampling, in Geologiya morei i okeanov. Materialy XIX Mezhdunarodnoi konferentsii (shkoly) po morskoi geologii (“Geology of the Seas and Oceans,” Proceedings of the XIX International Conference and Workshop on Marine Geology), Moscow, Russia, 2011, vol. 5, pp. 174–177.

  49. Shvarev, S.V. and Rodkin, M.V., Structural position and parameters of the paleoearthquakes in the area of Vottovaara Mountain (Middle Karelia, eastern part of the Fennoscandian Shield), Seism. Instrum., 2018, vol. 54, no. 2, pp. 199–218. https://doi.org/10.3103/S0747923918020093

    Article  Google Scholar 

  50. Shevchenko, N.V., Kuznetsov, D.E., and Ermolov, A.A., Seismotectonic evidence from the coastal topography of the White Sea, Vestn. Mosk. Gos. Univ., Ser. 5: Geogr., 2007, no. 3, pp. 44–49.

  51. Sidorin, A.Ya., Problems of seismic hazard assessment for nuclear power facilities on the Kola Peninsula and in Karelia, Seism. Instrum., 2019, vol. 55, no. 6, pp. 688−691. https://doi.org/10.3103/S0747923919060070

    Article  Google Scholar 

  52. Ulomov, V.I., Bogdanov, M.I., Trifonov, V.G., Gusev, A.A., Gusev, G.S., Akatova, K.N., Aptikaev, F.F., Danilova, T.I., Kozhurin, A.I., Medvedeva, N.S., Nikonov, A.A., Peretokin, S.A., Pustovitenko, B.G., and Strom, A.L., General seismic zoning of the Russian Federation. Explanatory note to the GSZ-2016 set of maps and the list of cities and localities situated in regions prone to seismic hazard, Inzh. Izyskaniya, 2016, no. 7, pp. 49–121.

  53. Verzilin, N.N. and Bobkov, A.A., Tracing the postglacial seismic evidence at the northeastern end of the Chupa Bay of the White Sea, in Ekskursii v geologii: Kollektivnaya monografiya (Geological Excursions: Collective Monograph), Nesterov, E.M., Ed., St. Petersburg: Ross. Gos. Ped. Univ. im. A.I. Gertsena, 2009, vol. V, pp. 40−49.

  54. Vinogradov, A.N., Baranov, S.V., Vinogradov, Yu.A., and Asming, V.E., Seismogenic zones in the northen Baltic Shield, in Aktivnye geologicheskie i geofizicheskie protsessy v litosfere. Metody, sredstva i rezul’taty izucheniya. Materialy XII mezhdunarodnoi konferentsii (“Active Geological and Geophysical Processes: Study Methods, Tools, and Results,” Proceedings of the XII International Conference), Voronezh, Russia, 2006, Voronezh: Voronezh. Gos. Univ., 2006, vol. 1, pp. 115–120.

  55. Zavyalov, A.D., Peretokin, S.A., Danilova, T.I., Medvedeva, N.S., and Akatova, K.N., General Seismic Zoning: From maps GSZ-97 to GSZ-2016 and new-generation maps in the parameters of physical characteristics, Seism. Instrum., 2019, vol. 55, no. 4, pp. 445−463. https://doi.org/10.3103/S0747923919040121

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Ponomarev, V.A. Kamzolkin, and S.F. Kolesnikov for help in organizing expeditions in recent years, and to A.M. Korzhenkov, F.L. Yakovlev, E.A. Rogozhin, O.V. Pavlenko, Yu.A. Morozov, and A.A. Lukashov for helpful discussion of the interim results of the study.

Funding

The study was carried out with the support of a state task (topic no. 0144-2019-0012) and the Russian Foundation for Basic Research (project no. 18-35-00296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Gorbatov.

Ethics declarations

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatov, E.S., Razumniy, S.D., Strelnikov, A.A. et al. Identification of the Seismogenic Structure in the Area of Chupa (North Karelia) and Parameterization of Paleoearthquakes in the Kandalaksha Graben Region. Seism. Instr. 56, 468–490 (2020). https://doi.org/10.3103/S0747923920040040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923920040040

Keywords:

Navigation