Skip to main content
Log in

Cyclic Point Processes with Limited Aftereffect for a Pulse Signal Analysis with Significant Pulse Rhythm Variability

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present the results of applying the model of cyclic point processes with a limited aftereffect for the analysis of the rhythmic characteristics of pulsed signals. Being a generalization of recurrent and alternating point processes, we show that cyclic processes can describe event flows with more than two states. The latter circumstance significantly expands the scope of their application, in particular, to biomedical signals. Here, a complete (local) statistical description of the cyclic processes is derived, the asymptotics of their behavior are studied, and a simplified statistical description for the case of stationary modes is given. In the latter case, analytical expressions for the average and second mixed moments of the cyclic process are obtained based on the local statistics. In the most important particular case, the dependence of the features of their structure on the time scales of the signal dynamics and on the ratios between the scales was clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. For more information on terminology in this field, see the note in [3, p. 100].

REFERENCES

  1. A. Napolitano, Cyclostationary Processes and Time Series. Theory, Applications, and Generalizations (Elsevier, 2019).

    Google Scholar 

  2. A. Ya. Khinchin, Tr. MIAN SSSR 49, 3 (1955).

    Google Scholar 

  3. I. A. Bol’shakov, Statistical Problems of Signal Flow Extraction from Noise (Sovetskoe Radio, Moscow, 1969) [in Russian].

    Google Scholar 

  4. D. R. Cox and H. D. Miller, The Theory of Stochastic Processes (Methuen & Co LTD, London, 1970).

    Google Scholar 

  5. R. Barbieri, E. C. Matten, A. A. Alabi, and E. N. Brown, Am. J. Physiol. Heart Cicr. Physiol. 288 (1), H424 (2005).

    Article  Google Scholar 

  6. R. Serfozo, Basics of Applied Stochastic Processes (Springer-Verlag, Berlin, 2009).

    Book  Google Scholar 

  7. V. E. Antsiperov, Zh. Radioelektron., No. 6 (2015). http://jre.cplire.ru/jre/jun15/8/text.pdf.

  8. V. E. Antsiperov, in Physics—Life Sciences (Theses 2nd Russian Conf. with Int. Participation, St.-Petersburg, Sept. 18–22,2017) (Ioffe FTI, St.-Petersburg, 2017), p. 61.

  9. V. E. Antsiperov, in Radiolocation and Radio Communication (Proc. 11th All-Russian Conf., Moscow, Nov. 27–29,2017) (IRE, Moscow, 2017), p. 359.

  10. V. Antsiperov, Biomed. Radioelektronika 7, 61 (2018).

    Google Scholar 

  11. V. E. Antsiperov, Fiz. Osn. Priborostr. 7 (4), 70 (2018). https://doi.org/10.25210/jfop?1804-070077

    Article  Google Scholar 

  12. V. I. Tikhonov and M. A. Mironov, Markovian Processes (Sovetskoe Radio, Moscow, 1977) [in Russian].

    Google Scholar 

  13. S. M. Rytov, Introduction to Statistical Radiophysics, Part 1: Random Proceses (Nauka, Moscow, 1976), [in Russian].

    Google Scholar 

  14. H. Bateman and A. Erdélyi, Higher Transcendental Functions (R. E. Krieger Pub. Co., Malabar, Fla., 1981; Nauka, Moscow, 1974), Vol. 2.

  15. H. Bateman and A. Erdélyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954; Nauka, Moscow, 1969), Vol. 1.

  16. M. S. Bartlett, in Proc. Fifth. Symp. Math. Statistics and Probability, Berkeley, Jun. 21–Jul. 18, 1965 & Dec. 27, 1965–Jan. 7, 1966 (Univ. of California, Berkeley, 1967), Vol. 3, p. 135.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-02108 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Antsiperov.

Additional information

Translated by A. Ivanov

APPENDIX A

APPENDIX A

Information on Bessel Functions of the First Kind \({{\mathcal{J}}_{n}}\left( z \right)\), of the Integer Order of \(n = 0, \pm ~1, \ldots \)

Bessel functions of the first kind \({{\mathcal{J}}_{n}}\left( z \right)\) for integer values of \(~n = 0, \pm ~1,~ \ldots \) ​​may be determined in several different ways [14]. In addition to the fact that they are defined as special solutions of the differential equation of the same name, \({{\mathcal{J}}_{n}}\left( z \right)\) may be defined by a number of hypergeometric types,

$$\begin{gathered} {{\mathcal{J}}_{n}}\left( z \right) = \frac{1}{{n!}}{{\left( {\frac{z}{2}} \right)}^{n}}\sum\limits_{m = 0}^{~ + \infty } {\frac{{ - {{1}^{m}}}}{{m!}}} \frac{{n!}}{{\left( {n + m} \right)!}}{{\left( {\frac{z}{2}} \right)}^{{2m}}} \\ = \frac{1}{{n!}}{{\left( {\frac{z}{2}} \right)}^{n}}\left[ {1 - \frac{1}{{\left( {n + 1} \right)}}{{{\left( {\frac{z}{2}} \right)}}^{2}} + \ldots } \right], \\ \end{gathered} $$
(A1)

or as coefficients \(w\) at powers in the expansion of the generating function,

$$\exp \left( {\frac{z}{2}\left[ {w - \frac{1}{w}} \right]} \right) = \sum\limits_{ - \infty }^{ + \infty } {{{\mathcal{J}}_{n}}} \left( z \right){{w}^{n}}.$$
(A2)

Substitution of \(w = \exp \left[ {j\varphi } \right]\) in (A2) leads to the Jacobi-Anger formula (to the expansion of \(\exp \left[ {jz\sin \left( \varphi \right)} \right]\) in a Fourier series):

$$\exp \left[ {jz\sin \left( \varphi \right)} \right] = \sum\limits_{n = - \infty }^{~ + \infty } {{{\mathcal{J}}_{n}}\left( z \right)} \exp \left( {jn\varphi } \right).$$
(A3)

Formula (A3) implies, in particular, the relation

$$\begin{gathered} \frac{1}{K}\sum\limits_{l = 0}^{K - 1} {\exp } \left[ {jz\sin \left( {\frac{{2\pi }}{K}\left( {l - \frac{r}{2}} \right)} \right)} \right] \\ = \sum\limits_{ - \infty }^{ + \infty } {{{\mathcal{J}}_{n}}\left( z \right)} \exp \left[ { - \pi j\frac{n}{K}r)} \right]\frac{1}{K}\sum\limits_{l = 0}^{K - 1} {\exp } \left[ {2\pi j\frac{n}{K}l} \right] \\ = \sum\limits_{p = - \infty }^{~ + \infty } {{{{\left( { - 1} \right)}}^{{pr}}}} {{\mathcal{J}}_{{Kp}}}\left( z \right). \\ \end{gathered} $$
(A4)

Formula (A3) also implies the formula of the Bessel integral:

$$\begin{gathered} \int\limits_0^{2\pi } {\exp } \left[ {jz\sin \left( \varphi \right) - jm\varphi } \right]d\varphi \\ = \sum\limits_{ - \infty }^{ + \infty } {{{\mathcal{J}}_{n}}\left( z \right)} \int\limits_0^{2\pi } {\exp } \left( {j\left( {n - m} \right)\varphi } \right)d\varphi \\ = 2\pi {{\mathcal{J}}_{m}}\left( z \right). \\ \end{gathered} $$
(A5)

In turn, integral representations of the following form follow from (A5):

$$\begin{gathered} {{\mathcal{J}}_{m}}\left( z \right) = \frac{1}{{2\pi }}\int\limits_0^{2\pi } {\exp \left[ {jz\sin \left( \varphi \right) - jm\varphi } \right]d\varphi } \\ = \frac{1}{{2\pi }}\int\limits_{ - {\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0em} 2}}^{{\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0em} 2}} {\exp \left[ {jz\sin \left( \varphi \right)} \right]\left\{ {\exp \left[ { - jm\varphi } \right] + {{{\left( { - 1} \right)}}^{m}}\exp \left[ {jm\varphi } \right]} \right\}d\varphi } \\ = \frac{1}{\pi }\int\limits_{ - {\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0em} 2}}^{{\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0em} 2}} {\exp \left[ {jz\sin \left( \varphi \right)} \right]{{{\left( j \right)}}^{m}}\cos \left[ {m\left( {\varphi + \frac{\pi }{2}} \right)} \right]d\varphi } \\ = \frac{{{{{\left( j \right)}}^{m}}}}{\pi }\int\limits_{ - 1}^1 {\frac{{\exp \left[ {jzy} \right]}}{{\sqrt {1 - {{y}^{2}}} }}} \cos \left[ {m\left( {\arcsin \left( y \right) + \frac{\pi }{2}} \right)} \right]dy = \frac{{{{{\left( { - j} \right)}}^{m}}}}{\pi }\int\limits_{ - 1}^1 {\frac{{\exp \left[ {jzy} \right]}}{{\sqrt {1 - {{y}^{2}}} }}{{T}_{m}}\left( y \right)dy} , \\ \end{gathered} $$
(A6)

where it is used that \(\cos \left[ {m\arccos \left( y \right)} \right] = {{T}_{m}}\left( y \right)\) are the Chebyshev polynomials of the first kind. Taking the Fourier transform from both sides of (A6), we obtain a Fourier-image of \({{\mathcal{J}}_{m}}\left( z \right)\) (see also [15]):

$$\begin{gathered} F\left[ {{{\mathcal{J}}_{m}}\left( z \right)} \right]\left( x \right) = \int\limits_{ - \infty }^{ + \infty } {\exp } \left[ {jxz} \right]{{\mathcal{J}}_{m}}\left( z \right)dz = 2{{\left( { - j} \right)}^{m}}\int\limits_{ - 1}^1 {{\delta }\left( {x + y} \right)} \frac{1}{{\sqrt {1 - {{y}^{2}}} }}{{T}_{m}}\left( y \right)dy \\ = \left\{ \begin{gathered} \frac{{{{{\left( j \right)}}^{m}}2{{T}_{m}}\left( x \right)}}{{\sqrt {1 - {{x}^{2}}} }}\,\,~\,\,{\text{for}}~\,\,\,\,\left| x \right| < 1, \\ 0\,\,\,\,{\text{for}}\,\,\,\,~\left| x \right| > 1~. \\ \end{gathered} \right. \\ \end{gathered} $$
(A7)

For \({{\mathcal{J}}_{0}}\left( {2z\sin \left( \psi \right)} \right)\) it follows from (A5) that

$$\begin{gathered} {{\mathcal{J}}_{0}}\left( {2z\sin \left( \psi \right)} \right) = \frac{1}{{2\pi }}\int\limits_0^{2\pi } {\exp \left[ {jz2\sin \left( \psi \right)\sin \left( \varphi \right)} \right]d\varphi } \\ = \frac{1}{{2\pi }}\int\limits_0^{2\pi } {\exp \left[ {jz\cos \left( {\varphi - \psi } \right)} \right]\exp \left[ { - jz\cos \left( {\varphi + \psi } \right)} \right]d\varphi } \\ = \frac{1}{{2\pi }}\int\limits_0^{2\pi } {\exp \left[ {jz\sin \left( {\varphi - \psi + \frac{\pi }{2}} \right)} \right]\exp \left[ { - jz\sin \left( {\varphi + \psi + \frac{\pi }{2}} \right)} \right]d\varphi } \\ = \sum\limits_{p = - \infty }^{ + \infty } {\sum\limits_{q = - \infty }^{~ + \infty } {{{\mathcal{J}}_{p}}\left( z \right){{\mathcal{J}}_{q}}\left( z \right)\exp \left[ { - \psi \left( {p + q} \right)} \right]\frac{1}{{2\pi }}} } \int\limits_0^{2\pi } {\exp \left[ {j\left( {\varphi + \frac{\pi }{2}} \right)\left( {p - q} \right)} \right]d\varphi } \\ = \sum\limits_{p = - \infty }^{ + \infty } {\mathcal{J}_{p}^{2}\left( z \right)\exp \left[ { - 2p\psi } \right]} . \\ \end{gathered} $$
(A8)

Using the Rodrigues formula for the Chebyshev polynomials \({{T}_{m}}\left( y \right) = {{\left( { - 1} \right)}^{m}}\frac{{\sqrt \pi }}{{{{2}^{m}}\Gamma \left( {m + \frac{1}{2}} \right)}}\sqrt {1 - {{y}^{2}}} \) × \(\frac{{{{\partial }^{m}}}}{{\partial {{y}^{m}}}}{{\left( {1 - {{y}^{2}}} \right)}^{{m - \frac{1}{2}}}}\) in (A6), we obtain the Poisson integral:

$$\begin{gathered} {{\mathcal{J}}_{m}}\left( z \right) = \frac{{{{{\left( { - j} \right)}}^{m}}}}{\pi }\mathop \smallint \limits_{ - 1}^1 \frac{{\exp \left[ {jzy} \right]}}{{\sqrt {1 - {{y}^{2}}} }}{{T}_{m}}\left( y \right)dy = \frac{{{{{\left( j \right)}}^{m}}}}{\pi }\frac{{\sqrt \pi }}{{{{2}^{m}}\Gamma \left( {m + \frac{1}{2}} \right)}}\mathop \smallint \limits_{ - 1}^1 \exp \left[ {jzy} \right]\frac{{{{\partial }^{m}}}}{{\partial {{y}^{m}}}}{{\left( {1 - {{y}^{2}}} \right)}^{{m - \frac{1}{2}}}}dy \\ = {{\left( j \right)}^{m}}\frac{{{{{\left( { - 1} \right)}}^{m}}}}{{{{2}^{m}}\sqrt \pi \Gamma \left( {m + \frac{1}{2}} \right)}}{{\left[ {jz} \right]}^{m}}\mathop \smallint \limits_{ - 1}^1 \exp \left[ {jzy} \right]{{\left( {1 - {{y}^{2}}} \right)}^{{m - \frac{1}{2}}}}dy = \frac{1}{{\sqrt \pi \Gamma \left( {m + \frac{1}{2}} \right)}}{{\left( {\frac{z}{2}} \right)}^{m}}\mathop \smallint \limits_{ - 1}^1 \exp \left[ {jzy} \right]{{\left( {1 - {{y}^{2}}} \right)}^{{m - \frac{1}{2}}}}dy \\ = \frac{2}{{\sqrt \pi \Gamma \left( {m + \frac{1}{2}} \right)}}{{\left( {\frac{z}{2}} \right)}^{m}}\mathop \smallint \limits_0^1 \cos \left[ {zy} \right]{{\left( {1 - {{y}^{2}}} \right)}^{{m - \frac{1}{2}}}}dy. \\ \end{gathered} $$
(A9)

From the Poisson integral (A9), the following estimate follows:

$$\begin{gathered} \left| {{{\mathcal{J}}_{m}}\left( z \right)} \right| < \frac{2}{{\sqrt \pi \Gamma \left( {m + \frac{1}{2}} \right)}}{{\left( {\frac{{\left| z \right|}}{2}} \right)}^{m}}\int\limits_0^1 {{{{\left( {1 - {{y}^{2}}} \right)}}^{{m - \frac{1}{2}}}}} dy = \frac{1}{{\sqrt \pi \Gamma \left( {m + \frac{1}{2}} \right)}}{{\left( {\frac{{\left| z \right|}}{2}} \right)}^{m}}\int\limits_0^1 {{{t}^{{m - \frac{1}{2}}}}} {{\left( {1 - t} \right)}^{{ - \frac{1}{2}}}}dt \\ = \frac{1}{{\sqrt \pi \Gamma \left( {m + \frac{1}{2}} \right)}}{{\left( {\frac{{\left| z \right|}}{2}} \right)}^{m}}B\left( {m + \frac{1}{2};\frac{1}{2}} \right) = \frac{1}{{\sqrt \pi \Gamma \left( {m + \frac{1}{2}} \right)}}{{\left( {\frac{{\left| z \right|}}{2}} \right)}^{m}}\frac{{\Gamma \left( {m + \frac{1}{2}} \right)\Gamma \left( {\frac{1}{2}} \right)}}{{\Gamma \left( {m + 1} \right)}} \\ = \frac{1}{{\Gamma \left( {m + 1} \right)}}{{\left( {\frac{{\left| z \right|}}{2}} \right)}^{m}} = \frac{1}{{m!}}{{\left( {\frac{{\left| z \right|}}{2}} \right)}^{m}}. \\ \end{gathered} $$
(A10)

Comparing (A10) and (A1), we can conclude that \({{\mathcal{J}}_{m}}\left( z \right)\) on the entire real axis does not exceed in absolute value the modulus of its first term in a series expansion in powers of argument z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antsiperov, V.E. Cyclic Point Processes with Limited Aftereffect for a Pulse Signal Analysis with Significant Pulse Rhythm Variability. J. Commun. Technol. Electron. 65, 904–927 (2020). https://doi.org/10.1134/S1064226920070013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920070013

Navigation