Skip to main content
Log in

Spectral Dynamics of Quantum Cascade Lasers Generating Frequency Combs in the Long-Wavelength Infrared Range

  • PHOTONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have studied the spectral and dynamic characteristics of quantum cascade lasers emitting in the long-wavelength infrared range. It is shown that lasers with a short cavity (~1 mm) make it possible to obtain frequency combs in a very wide spectral range. We have investigated the spectral dynamics in the frequency comb generation regime. It is demonstrated that the intensity of longitudinal laser modes varies during a pump pulse propagation. We have observed simultaneous generation of all longitudinal modes of a frequency comb over a pump pulse segment with a constant amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. Coddington, N. Newbury, and W. Swann, Optica 3 (4), 414 (2016).

    Article  ADS  Google Scholar 

  2. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hansch, Phys. Rev. Lett. 84, 2264 (2000).

    Article  Google Scholar 

  3. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 3232 (2000).

    Article  Google Scholar 

  4. J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, Nanophotonics 5, 272 (2016).

    Article  Google Scholar 

  5. J. Hillbrand, A. M. Andrews, H. Detz, G. Strasser, and B. Schwarzet, Nat. Photonics 13, 101 (2019).

    Article  ADS  Google Scholar 

  6. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A.  L.  Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, IEEE J. Sel. Top. Quantum Electron. 6, 12929 (2000).

    Article  Google Scholar 

  7. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kartner, A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, Opt. Express 17, 145 (2009).

    Google Scholar 

  8. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Hofler, H. C. Liu, H.  Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, Phys. Rev. A 77, 053804 (2008).

    Article  ADS  Google Scholar 

  9. V. V. Dudelev, D. A. Mikhailov, A. V. Babichev, S. N. Losev, D. V. Chistyakov, E. A. Kognovitskaya, D. D. Avrov, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, V. I. Kuchinskii, A. Yu. Egorov, and G. S. Sokolovskii, Tech. Phys. Lett. 45, 1027 (2019).

    Article  ADS  Google Scholar 

  10. A. V. Babichev, A. G. Gladyshev, A. V. Filimonov, V. N. Nevedomskii, A. S. Kurochkin, E. S. Kolodeznyi, G. S. Sokolovskii, V. E. Bugrov, L. Ya. Karachinsky, I. I. Novikov, A. Bousseksou, and A. Yu. Egorov, Tech. Phys. Lett. 43, 666 (2017).

    Article  ADS  Google Scholar 

  11. A. V. Babichev, A. G. Gladyshev, A. S. Kurochkin, V. V. Dudelev, E. S. Kolodeznyi, G. S. Sokolovskii, V. E. Bugrov, L. Ya. Karachinsky, I. I. Novikov, D. V. Denisov, A. S. Ionov, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, and A. Yu. Egorov, Tech. Phys. Lett. 44, 398 (2018).

    Article  Google Scholar 

  12. A. V. Babichev, V. V. Dudelev, A. G. Gladyshev, D. A. Mikhailov, A. S. Kurochkin, E. S. Kolodeznyi, V. E. Bougrov, V. N. Nevedomskiy, L. Ya. Karachinsky, I. I. Novikov, D. V. Denisov, A. S. Ionov, S. O. Slipchenko, A. V. Lutetskiy, N. A. Pikhtin, G. S. Sokolovskii, and A. Yu. Egorov, Tech. Phys. Lett. 45, 735 (2019).

    Article  ADS  Google Scholar 

  13. V. V. Dudelev, D. A. Mikhailov, A. V. Babichev, A.  D.   Andreev, S. N. Losev, E. A. Kognovitskaya, Yu. K. Bobretsova, S. O. Slipchenko, N. A. Pikhtin, A. G. Gladyshev, D. V. Denisov, I. I. Novikov, L. Ya. Karachinsky, V. I. Kuchinskii, A. Yu. Egorov, and G. S. Sokolovskii, Quantum Electron. 50, 141 (2020).

    Article  ADS  Google Scholar 

  14. V. V. Dudelev, S. N. Losev, V. Yu. Mylnikov, A. V. Babichev, E. A. Kognovitskaya, S. O. Slipchenko, A. V. Lutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Karachinskii, I. I. Novikov, A. Yu. Egorov, V. I. Ku-chinskii, and G. S. Sokolovskii, Opt. Spectrosc. 125, 402 (2018).

    Article  ADS  Google Scholar 

  15. V. V. Dudelev, S. N. Losev, V. Yu. Myl’nikov, A. V. Babichev, E. A. Kognovitskaya, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. Yu. Egorov, V. I. Kuchinskii, and G. S. Sokolovskii, Tech. Phys. 63, 1656 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, unique project identifier no. RFMEFI61619X0111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Sokolovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudelev, V.V., Mikhailov, D.A., Babichev, A.V. et al. Spectral Dynamics of Quantum Cascade Lasers Generating Frequency Combs in the Long-Wavelength Infrared Range. Tech. Phys. 65, 1281–1284 (2020). https://doi.org/10.1134/S106378422008006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422008006X

Navigation