Skip to main content
Log in

Mathematical Model of Low-Concentration Disperse Suspension Fractionation in a Plane Vertical Hydroclassifier

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A continuum mathematical model of low-concentration suspension transfer without mixing in a plane vertical gravitational classifier under conditions of phase flux balance is suggested. The flow of a carrier medium is assumed to be laminar, and no limitations on the particle sedimentation rate are imposed. Analytical relationships to calculate the local counting functions of the particle size distribution density have been derived. A computational experiment has confirmed the fractionation of a monodisperse suspension and the presence of fine particles in the “heavy” fractions of polydisperse suspensions. The latter fact is explained by a low velocity of the disperse medium at the “wetted” surfaces of the hydroclassifier. The results are in agreement with available experimental data and data calculated in terms of classical kinetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Affa, S. A. Razzak, K. D. Nigam, and J.-X. Zhu, Ind. Eng. Chem. Res. 49 (9), 7876 (2009).

    Google Scholar 

  2. R. R. Polchar and V. Shilapurain, Particuology 31, 59 (2017).

    Article  Google Scholar 

  3. M. D. Barsky, V. I. Revnivtsev, and Yu. V. Sokolkin, Gravitational Classification of Granular Materials (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  4. A. M. Goula, M. Kostoglu, T. D. Karapatsios, and A. L. Zouboulis, Chem. Eng. J. 140, 110 (2007).

    Article  Google Scholar 

  5. J. B. Farrow, P. D. Fawell, R. R. M. Johnston, T. B. Nguyen, M. Rudman, K. Simic, and J. D. Swift, Chem. Eng. J. 180, 149 (2000).

    Article  Google Scholar 

  6. Y. Cheng and J.-X. Zhu, Can. J. Chem. Eng. 83 (2), 177 (2005).

    Article  ADS  Google Scholar 

  7. D. I. Chirkun, N. P. Saevich, A. E. Levdanskiy, and S. V. Yarmol’nik, Tr. Belorus. Gos. Tekhnol. Univ. (BGTU), Ser. 2: Khim. Tekhnol., Biotekhnol., Geoekol., No. 2, 190 (2017).

  8. A. Di Renzo, F. D. Cello, and F. P. Maio, Chem. Eng. Sci. 66 (13), 2945 (2011).

    Article  Google Scholar 

  9. M. Yongli, L. Mingyan, and Z. Yuan, Chem. Eng. Sci. 66 (13), 2945 (2011).

    Article  Google Scholar 

  10. H. Nasr-El-Din, J. H. Masliyah, K. Nandakumar, and D. H.-S. Law, Chem. Eng. Sci. 43 (12), 3225 (1988).

    Article  Google Scholar 

  11. Y. Berman and A. Tamir, Chem. Eng. Sci. 58, 2089 (2003).

    Article  Google Scholar 

  12. G. M. Ostrovsky, Applied Mechanics of Inhomogeneous Media (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  13. T. T. Lugumanov and V. S. Kuleshov, Tr. Mavlyutov Inst. Mekh. 10, 66 (2014).

    Article  Google Scholar 

  14. G. Serge and A. Silberberg, Nature 189, 209 (1961).

    Article  ADS  Google Scholar 

  15. P. G. Saffman, J. Fluid Mech. 22, 385 (1965).

    Article  ADS  Google Scholar 

  16. V. P. Yatsenko, Fiz. Aerodispers. Sistem 39, 240 (2002).

    Google Scholar 

  17. D. A. Gubaydullin and P. P. Osipov, Current Problems of Continuum Mechanics. To Mark the 20th Anniversary of Inst. Mekh. Mashinisrtoen. Kazan Sci. Center RAN (Foliant, Kazan, 2011), Vol. 1, pp. 82–97 [in Russian].

    Google Scholar 

  18. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 1960).

    Google Scholar 

  19. Yu. I. Dytnersky, Processes and Devices of Chemical Technology (Khimiya, Moscow, 2002), Chap. 1 [in Russian].

    Google Scholar 

  20. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review (McGraw-Hill, 1967).

    MATH  Google Scholar 

  21. F. D. T. Luna, A. G. Silva, N. K. Fukumasu, O. Bazan, J. H. A. Gouveia, D. Moraes, Jr., J. I. Yanagihara, and A. S. Vianna, Jr., Chem. Eng. J. 362, 712 (2019).

    Article  Google Scholar 

  22. I. V. Domansky, I. V. Davydov, and V. P. Borovinsky, Tsvet. Metally, No. 1, 25 (2000).

    Google Scholar 

  23. A. G. Gael’ and L. F. Smirnova, Sands and Sandy Soils (GEOS, Moscow, 1999) [in Russian].

    Google Scholar 

  24. New Handbook of Chemist and Technologist. Processes and Devices of Chemical Technologies (NPO Professional, St. Petersburg, 2006), Part 2 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ryazhskikh.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazhskikh, A.V. Mathematical Model of Low-Concentration Disperse Suspension Fractionation in a Plane Vertical Hydroclassifier. Tech. Phys. 65, 1226–1232 (2020). https://doi.org/10.1134/S1063784220080150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080150

Navigation