Skip to main content
Log in

Scanning Tunneling Microscopy of the Ytterbium Nanofilm Surface and Layers of Oxygen Molecules Adsorbed on It

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The surfaces of Yb–Si(111) and O–Yb–Si(111) structures (with a thickness of ytterbium nanofilms of 16 monolayers (6.08 nm)) have been investigated for the first time using scanning tunnel microscopy, which has provided data on the morphology and phase composition of these surfaces. It is found that, prior to oxygen adsorption, the nanofilms exhibit a high degree of homogeneity over their thickness, grow in accordance with a mechanism very close to the layer-by-layer growth, and have a homogeneous crystalline structure. After oxygen adsorption, an island layer of oxygen molecules is formed with a thickness of 0.112 nm. It is shown that the nanofilms morphology in the regions of the film surface coated by a monomolecular oxygen film changes significantly, while the morphology of the surface regions uncoated with the adsorbed layer remains unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Shikin, Formation, Electronic Structure and Properties of Low-Dimensional Structures Based on Metals (VVM, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  2. G. Cao and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (World Scientific, Singapore, 2011), Vol. 2. https://doi.org/10.1142/7885

  3. B. Yang, X. Lin, H.-J. Gao, N. Nilius, and H.-J. Freund, J. Phys. Chem. C 114 (19), 8997 (2010). https://doi.org/10.1021/jp100757y

    Article  Google Scholar 

  4. L. Zhu, L. Zhang, and A. V. Virkar, J. Electrochem. Soc. 165 (3), F232 (2018). https://doi.org/10.1149/2.0011805jes

    Article  Google Scholar 

  5. Z.-H. Qin, M. Lewandowski, Y.-N. Sun, S. Shaikhutdinov, and H.-J. Freund, J. Phys.: Condens. Matter 21, 134019 (2009). https://doi.org/10.1088/0953-8984/21/13/134019

    Article  ADS  Google Scholar 

  6. E. L. Wilson, Q. Chen, W. A. Brown, and G. Thornton, J. Phys. Chem. C 111, 14215 (2007).

    Article  Google Scholar 

  7. P. Jakob and A. Schlapka, Surf. Sci. 601, 3556 (2007). https://doi.org/10.1016/j.susc.2007.06.035

    Article  ADS  Google Scholar 

  8. F. Voigts, F. Bebensee, S. Dahle, K. Volgmann, and W. Maus-Friedrichs, Surf. Sci. 603, 40 (2009). https://doi.org/10.1016/j.susc.2008.10.016

    Article  ADS  Google Scholar 

  9. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 52 (3), 625 (2010).

    Article  ADS  Google Scholar 

  10. D. V. Buturovich, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 57 (9), 1870 (2015).

    Article  ADS  Google Scholar 

  11. M. A. Mittsev, M. V. Kuz’min, and M. V. Loginov, Phys. Solid State 58 (10), 2130 (2016).

    Article  ADS  Google Scholar 

  12. M. A. Mittsev and M. V. Kuz’min, Phys. Solid State 60 (7), 1432 (2018). https://doi.org/10.1134/S1063783418070193

    Article  ADS  Google Scholar 

  13. D. V. Buturovich, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 48 (11), 2205 (2006).

    Article  ADS  Google Scholar 

  14. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78 (1), 013705 (2007). https://doi.org/10.1063/1.2432410

    Article  ADS  Google Scholar 

  15. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 52 (6), 1279 (2010).

    Article  ADS  Google Scholar 

  16. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 56 (7), 1449 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kuz’min.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’min, M.V., Mittsev, M.A. Scanning Tunneling Microscopy of the Ytterbium Nanofilm Surface and Layers of Oxygen Molecules Adsorbed on It. Tech. Phys. 65, 1307–1312 (2020). https://doi.org/10.1134/S1063784220080125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080125

Navigation