Skip to main content
Log in

Generation of Coherent X-ray Harmonic Radiation in a Single-Pass Free-Electron Laser with Phase Shift of Electrons Relative to Photons

  • ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Evolution of bunching and harmonic power is theoretically studied for a single-pass free-electron laser (FEL) in which electrons are periodically phase-shifted relative to photons in intervals between undulators with harmonics of magnetic field. Analytical calculations are used to reveal the configuration of magnetic field of an asymmetric elliptical and planar undulators that make it possible to suppress the fundamental and amplify several higher harmonics. The evolution of power and bunching is analyzed using a phenomenological model of FEL that describes violation of bunching between the undulator stages and a relatively high sensitivity of electron–photon interaction at wavelengths of higher harmonics to energy spread, size, deflection of the beam from the axis, etc. Expressions for the Bessel coefficients of the planar and elliptical undulators with field harmonics are analytically studied. Such undulators can be used in phase-shifted FELs for an increase in the power of higher (X-ray) harmonics by a factor of up to 100 in comparison with conventional FELs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. G. Bagrov, G. S. Bisnovaty-Kogan, V. A. Bordovitsyn, A. V. Borisov, O. F. Dorofeev, V. Ya. Err, Yu. L. Pivovarov, O. V. Shorokhov, and V. Ch. Zhukovsky, Radiation Theory of Relativistic Particles, Ed. by V. A. Bordovitsyn (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  2. V. L. Ginzburg, Isv. Akad. Nauk SSSR. Fiz. 11 (2), 1651 (1947).

    Google Scholar 

  3. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys. 24, 826 (1953).

    Google Scholar 

  4. B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814 (2010).

    ADS  Google Scholar 

  5. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys. 88, 015006 (2016).

    ADS  Google Scholar 

  6. Z. Huang and K. J. Kim, Phys. Rev. Spec. Top.–Accel. Beams 10, 034801 (2007).

    ADS  Google Scholar 

  7. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers (Springer, 2000).

    Google Scholar 

  8. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun. 50, 373 (1984). https://doi.org/10.1016/0030-4018(84)90105-6

    Article  ADS  Google Scholar 

  9. P. Schmüser, M. Dohlus, J. Rossbach, and C. Behrens, Springer Tracts in Modern Physics, Vol. 258: Free-Electron Lasers in the Ultraviolet and X-Ray Regime (Springer, 2004). https://doi.org/10.1007/978-3-319-04081-3

  10. C. Pellegrini, Phys. Scr. 2016, 014004 (2016).

    Google Scholar 

  11. G. Margaritondo and P. R. Ribic, J. Synchrotron Radiat. 18, 101 (2011).

    Google Scholar 

  12. G. Margaritondo, Riv. Nuovo Cimento 40 (9), 411 (2017).

    Google Scholar 

  13. G. Margaritondo, “Characteristics and properties of synchrotron radiation,” in Synchrotron Radiation: Basics, Methods and Applications (Springer, Berlin, 2015), pp. 29–63.

    Google Scholar 

  14. F. Albertin, A. Astolfo, M. Stampanoni, F. Kaplan, and G. Margaritondo, X-Ray Spectrom. 44 (3), 93 (2015).

    ADS  Google Scholar 

  15. M. Frank, D. B. Carlson, M. S. Hunter, G. J. Williams, M. Messerschmidt, N. A. Zatsepin, A. Barty, W. H. Benner, K. Chu, A. T. Graf, S. P. Hau-Riege, R. A. Kirian, C. Padeste, T. Pardini, B. Pedrini, et al., IUCrJ 1, 95 (2014).

    Google Scholar 

  16. G. Margaritondo, J. Synchrotron Radiat. 26, 2094 (2019).

    Google Scholar 

  17. Y. Hwu, G. Margaritondo, and A.-S. Chiang, BMC Biol. 15, 122 (2017).

    Google Scholar 

  18. C.-F. Huang,  K. S. Liang,  T.-L. Hsu,  T.-T. Lee, Y.-Y. Chen, S.-M. Yang, H.-H. Chen, S.-H. Huang, W.-H. Chang,  T.-K. Lee,  P. Chen,  K.-E. Peng, C.-C. Chen, C.-Z. Shi, Y.-F. Hu, et al., Nanoscale 10, 2820 (2018).

    Google Scholar 

  19. N. M. Kroll and W. A. McMullin, Phys. Rev. A 17 (1), 300 (1978).

    ADS  Google Scholar 

  20. W. B. Colson, Nucl. Instrum. Methods Phys. Res., Sect. A 393, 82 (1997).

    Google Scholar 

  21. P. Sprangle and R. A. Smith, Phys. Rev. A 21 (1), 293 (1980).

    ADS  Google Scholar 

  22. R. Bonifacio, C. Pellegrini, and L. M. Narducci, Opt. Commun. 50, 373 (1984).

    ADS  Google Scholar 

  23. K. J. Kim and M. Xie, Nucl. Instrum. Methods Phys. Res., Sect. A 331, 359 (1993).

    Google Scholar 

  24. L.-H. Yu, M. Babzien, I. Ben-Zvi, L. F. DiMauro, A. Doyuran, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, L. Solomon, X. J. Wang, M. Woodle, et al., Science 289, 932 (2000).

    ADS  Google Scholar 

  25. L.-H. Yu, Phys. Rev. A 44, 5178 (1991).

    ADS  Google Scholar 

  26. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, Opt. Commun. 202, 169 (2002).

    ADS  Google Scholar 

  27. T. Shaftan and L.-H. Yu, Phys. Rev. E 71, 046501 (2005).

    ADS  Google Scholar 

  28. Li He-Ting and Jia Qi-Ka, Chin. Phys. C 37 (2), 028102 (2013).

    ADS  Google Scholar 

  29. Deng Hai-Xiao and Dai Zhi-Min, Chin. Phys. C 37 (10), 102001 (2013).

    ADS  Google Scholar 

  30. Deng Hai-Xiao and Dai Zhi-Min, Chin. Phys. C 34 (8), 1140 (2010).

    ADS  Google Scholar 

  31. L. Zeng, W. Qin, G. Zhao, S. Huang, Y. Ding, Zh. Huang, G. Marcus, and K. Liu, Chin. Phys. C 40 (9), 098102 (2016).

    ADS  Google Scholar 

  32. L. H. Yu, L. DiMauro, A. Doyuran, W. S. Graves, E. D. Johnson, R. Heese, S. Krinsky, H. Loos, J. B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, J. Skaritka, X. J. Wang, and Z. Wu, Phys. Rev. Lett. 91, 074801 (2003).

    ADS  Google Scholar 

  33. B. McNeil, Nat. Photonics 2, 522 (2008). https://doi.org/10.1038/nphoton.2008.164

    Article  ADS  Google Scholar 

  34. K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Düsterer, B. Faatz, U. Frühling, M. Gensch, Ch. Gerth, N. Guerassimova, U. Hahn, T. Hans, M. Hesse, K. Honkavaar, et al., New J. Phys. 11, 023029 (2009).

    ADS  Google Scholar 

  35. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 70, 232 (2015).

    ADS  Google Scholar 

  36. K. Zhukovsky, Laser Part. Beams 34, 447 (2016).

    ADS  Google Scholar 

  37. G. Mishra, M. Gehlot, and J.-K. Hussain, Nucl. Instrum. Methods Phys. Res., Sect. A 603 (3), 495 (2009).

    Google Scholar 

  38. K. V. Zhukovsky, J. Synchrotron Radiat. 26, 1481 (2019).

    MathSciNet  Google Scholar 

  39. J. R. Henderson, L. T. Campbell, H. P. Freund, and B. W. J. McNeil, New J. Phys. 18, 062003 (2016).

    ADS  Google Scholar 

  40. H. P. Freund, P. J. M. van der Slot, D. L. A. G. Grimminck, I. D. Setija, and P. Falgari, New J. Phys. 19, 023020 (2017).

    ADS  Google Scholar 

  41. H. P. Freund and P. J. M. van der Slot, New J. Phys. 20, 073017 (2018).

    ADS  Google Scholar 

  42. K. V. Zhukovsky, Russ. Phys. J. 62 (6), 1043 (2019).

    Google Scholar 

  43. K. Zhukovsky, Results Phys. 13, 102248 (2019).

    Google Scholar 

  44. V. I. Alexeev and E. G. Bessonov, Nucl. Instrum. Methods A 308, 140 (1991).

    ADS  Google Scholar 

  45. G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys. 100, 084507 (2006).

    ADS  Google Scholar 

  46. G. Dattoli, N. S. Mirian, E. DiPalma, and V. Petrillo, Phys. Rev. Spec. Top.–Accel. Beams 17, 050702 (2014).

    ADS  Google Scholar 

  47. K. Zhukovsky and I. Potapov, Laser Part. Beams 35, 326 (2017).

    ADS  Google Scholar 

  48. K. V. Zhukovsky, Russ. Phys. J. 60 (9), 1630 (2018).

    Google Scholar 

  49. K. Zhukovsky and A. Kalitenko, J. Synchrotron Radiat. 26, 159 (2019).

    Google Scholar 

  50. K. V. Zhukovsky and A. Kalitenko, Russ. Phys. J. 62 (2), 354 (2019).

    Google Scholar 

  51. K. Zhukovsky and A. Kalitenko, J. Synchrotron Radiat. 26, 605 (2019).

    Google Scholar 

  52. K. Zhukovsky, J. Phys. D 50, 505601 (2017).

    Google Scholar 

  53. K. Zhukovsky, Europhys. Lett. 119 (3), 34002 (2017).

    ADS  Google Scholar 

  54. K. V. Zhukovskii, Tech. Phys. 64 (3), 389 (2019).

    Google Scholar 

  55. K. V. Zhukovsky, I. A. Potapov, and A.M. Kalitenko, Radiophys. Quantum Electron. 61 (3), 216 (2018).

    ADS  Google Scholar 

  56. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 73 (4), 364 (2018).

    ADS  Google Scholar 

  57. K. Zhukovsky, Opt. Commun. 418, 57 (2018).

    ADS  Google Scholar 

  58. K. Zhukovsky, J. Appl. Phys. 122, 233103 (2017).

    ADS  Google Scholar 

  59. E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. Spec. Top.–Accel. Beams 15, 080702 (2012).

    ADS  Google Scholar 

  60. B. W. J. McNeil, G. R. M. Robb, M. W. Poole, and N. R. Thompson, Phys. Rev. Lett. 96, 084801 (2006).

    ADS  Google Scholar 

  61. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 73 (5), 462 (2018).

    ADS  Google Scholar 

  62. K. Zhukovsky, J. Opt. 20 (9), 095003 (2018).

    ADS  Google Scholar 

  63. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 74 (3), 308 (2019).

    ADS  Google Scholar 

  64. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 74 (5), 480 (2019).

    ADS  Google Scholar 

  65. K. V. Zhukovsky, Nucl. Instrum. Methods Phys. Res., Sect. B 369, 9 (2016).

    Google Scholar 

  66. K. V. Zhukovsky, Opt. Commun. 353, 35 (2015).

    ADS  Google Scholar 

  67. R. Bonifacio, L. De Salvo, and P. Pierini, Nucl. Instrum. Methods A 293 (3), 627 (1990).

    ADS  Google Scholar 

  68. Z. Huang and K.-J. Kim, Phys. Rev. E 62, 7295 (2000).

    ADS  Google Scholar 

  69. P. Emma, Akre R., Arthur J., Bionta R., Bostedt C., Bozek J., Brachmann A., Bucksbaum P., Coffee R., Decker F.-J., Ding Y., Dowell D., Edstrom S., Fisher A., Frisch J., et al., Nature Photonics 4, 641 (2010).

  70. Ratner D., Brachmann A., Decker F.J., Ding Y., Dowell D., Emma P., Fisher A., Frisch J., Gilevich S., Huang Z., Hering P., Iverson R., Krzywinski J., Loos H., et al., Phys. Rev. ST-AB 14, 060701 (2011).

Download references

ACKNOWLEDGMENTS

We are grateful to A. Borisov and A. Lobanov for helpful discussions and recommendations.

Funding

A.M. Kalitenko acknowledges support from the “Basis” Foundation for Development of Theoretical Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovskii, K.V., Kalitenko, A.M. Generation of Coherent X-ray Harmonic Radiation in a Single-Pass Free-Electron Laser with Phase Shift of Electrons Relative to Photons. Tech. Phys. 65, 1285–1295 (2020). https://doi.org/10.1134/S1063784220080241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080241

Navigation