Skip to main content
Log in

Heat Transfer in a Water Drop Containing a Dye and Nanoparticles under Double Laser Irradiation

  • PHOTONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Heat transfer in a water drop containing eosine and ablation silver nanoparticles induced by stationary visible laser irradiation, λ = 532 nm, and pulsed IR laser irradiation, λ = 10.6 μm (VIS–IR double laser irradiation), has been studied in the temperature interval of 0.2–50°C. It has been found that the vibratory system of triplet states in a dye molecule heats up after VIS–IR laser irradiation, causing thermoluminescence. The thermoluminescence decay kinetics indicates a new distribution of electron vibration modes in the fluorescence spectrum of dye molecules. If the drop with nanoparticles is small (d < 1 mm), pulsed IR irradiation (τ = 50 ms) gives rise to a thermal front causing thermoluminescence, which travels in the drop with a velocity of 0.85 cm/s. Heat transfer in the drop during the formation of a thermal wave has been simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. Yu. Tarasevich, Phys.-Usp. 47 (7), 717 (2004).

    Article  Google Scholar 

  2. D. Hu and H. Wu, Int. J. Therm. Sci. 96, 149 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.05.004

    Article  Google Scholar 

  3. N. A. Myslitskaya, A. V. Khitrin, A. M. Ivanov, I. G. Samusev, and V. V. Bryukhanov, Russ. Phys. J. 54 (11), 1280 (2012). https://doi.org/10.1007/s11182-012-9743-3

    Article  Google Scholar 

  4. J. C. Legros and M. V. Piskunov, Int. J. Multiphase Flow 102, 64 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2018.01.020

    Article  Google Scholar 

  5. E. I. Koshel, P. S. Chelushkin, A. S. Melnikov, P. Yu. Serdobintsev, A. Yu. Stolbovaia, V. I. Shcheslavskiy, O. Chernyavskiy, E. R. Gaginskaya, I. O. Koshevoy, and S. P. Tunik, J. Photochem. Photobiol., A 332, 122 (2017).

    Article  Google Scholar 

  6. O. George, J. Xiao, C. Rodrigo, R. Mercade-Prieto, J. Sempere, and X. Chen, Chem. Eng. Sci. 165, 33 (2017). https://doi.org/10.1016/j.ces.2017.02.038

    Article  Google Scholar 

  7. G. Liu and H. Cao, Sol. Energy 170, 184 (2018). https://doi.org/10.1016/j.solener.2018.05.069

    Article  ADS  Google Scholar 

  8. S. S. Sazhin, O. Rybdylova, A. S. Pannala, S. Somavarapa, and S. K. Zaripov, Int. J. Heat Mass Transfer 122, 451 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.094

    Article  Google Scholar 

  9. K. N. Volkov, P. V. Bulat, and E. E. Il’ina, Nauchn.-Tehn. Vestn. Inform. Tekhnol., Mekh. Opt. 16 (5), 764 (2016).

  10. D. V. Apeximov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Il’in, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, E. B. Sokolova, and R. R. Khabibullin, Prikl. Fiz., No. 6, 13 (2011).

  11. A. Al-Sharafi, B. S. Yilbas, and H. Ali, Int. J. Heat Mass Transfer 122, 749 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.032

    Article  Google Scholar 

  12. R. S. Volkov and P. A. Strizhak, Int. J. Therm. Sci. 127, 126 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.01.027

    Article  Google Scholar 

  13. G. Meng, L. Jiang, X. Li, Y. Xu, X. Shi, R. Yan, and Y. Lu, Appl. Surf. Sci. 410 (15), 22 (2017). https://doi.org/10.1016/j.apsusc.2017.03.079

    Article  ADS  Google Scholar 

  14. P. V. Lebedev-Stepanov and O. V. Rudenko, Acoust. Phys. 62 (4), 414 (2016). https://doi.org/10.1134/S1063771016040114

    Article  ADS  Google Scholar 

  15. C. Xiao, L. Zhou, Z. Sun, X. Du, and Y. Yang, Exp. Therm. Fluid Sci. 72, 210 (2016). https://doi.org/10.1016/j.expthermflusci.2015.11.013

    Article  Google Scholar 

  16. C. Soret, Arch. Sci. Phys. Nat. 2, 48 (1879).

    Google Scholar 

  17. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    MATH  Google Scholar 

  18. V. I. Ivanov, A. I. Livashvili, and K. N. Okishev, Izv. VUZov. Priborostroenie 51 (3), 50 (2008).

    Google Scholar 

  19. V. V. Bryukhanov, B. F. Minaev, A. V. Tsibul’nikova, N. S. Tikhomirova, and V. A. Slezhkin, J. Opt. Technol. 81 (11), 625 (2014).

    Article  Google Scholar 

  20. E. I. Konstantinova, B. F. Minaev, A. V. Tsibul’nikova, R. Yu. Borkunov, M. V. Tsarkov, A. Yu. Antipov, I. G. Samusev, and V. V. Bryukhanov, Opt. Spectrosc. 125, 874 (2018). https://doi.org/10.1134/S0030400X19020152

    Article  ADS  Google Scholar 

  21. N. A. Myslitskaya, R. Yu. Borkunov, M. V. Tsar’kov, V. A. Slezhkin, I. G. Samusev, and V. V. Bryukhanov, Russ. J. Phys. Chem. A 93 (8), 1559 (2019).

    Article  Google Scholar 

  22. P. H. Chen, H. H. Chen, R. Anbarasan, and L.-S. Kuo, IEEE Nanotechnology Materials and Devices Conf. (NMDC 2010), Monterey, California, USA, October 12–15, 2010 (IEEE, 2011).

  23. N. B. Vargaftik, Handbook of Thermophysical Properties of Liquids and Gases (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  24. C. A. Parker, Photoluminescence of Solutions (Elsevier, Amsterdam, 1968).

    Google Scholar 

  25. A. L. Smith, Applied Infrared Spectroscopy. Fundamentals, Techniques, and Analytical Problem Solving (Wiley, New York, 1979).

    Google Scholar 

  26. A. A. Makarov, A. L. Malinovsky, and E. A. Ryabov, Phys.-Usp. 55 (10), 977 (2012).

    Article  Google Scholar 

  27. G. N. Zatsepina, Physical Properties and Structure of Water (Moscow Gos. Univ., Moscow, 1998) [in Russian].

    MATH  Google Scholar 

  28. I. G. Samusev, R. Yu. Borkunov, M. V. Tsarkov, E. I. Konstantinova, Y. N. Antipov, M. V. Demin, and V. V. Bryukhanov, J. Phys.: Conf. Ser. 961, 012011 (2018). https://doi.org/10.1088/1742-6596/961/1/012011

    Article  Google Scholar 

  29. E. I. Konstantinova, R. Yu. Borkunov, M. B. Tsarkov, I. G. Samusev, Yu. N. Antipov, and V. V. Btyukhanov, J. Appl. Spectrosc. 86 (2), 232 (2019).

    Article  ADS  Google Scholar 

  30. G. M. Kondrat’ev, Regular Thermal Regime (Gostekhizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  31. F. M. Kam’ya, Pulse Theory of Thermal Conductivity, Ed. by A. V. Lykov (Energiya, Moscow, 1972) [in Russian].

    Google Scholar 

  32. A. V. Lykov, Theory of Thermal Conductivity (Vysshaya Shkola, Moscow, 1966) [in Russian].

    Google Scholar 

  33. A. V. Lykov and B. M. Berkovskii, Convection and Heat Waves (Energiya, Moscow, 1974) [in Russian].

    Google Scholar 

  34. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  35. I. I. Ryzhkov, PhD Thesis (Inst. Comp. Model. SB RAN, Krasnoyarsk, 2014).

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation, project no. 3.5022.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Myslitskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myslitskaya, N.A., Borkunov, R.Y., Tsar’kov, M.V. et al. Heat Transfer in a Water Drop Containing a Dye and Nanoparticles under Double Laser Irradiation. Tech. Phys. 65, 1272–1280 (2020). https://doi.org/10.1134/S1063784220080137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080137

Navigation