Skip to main content
Log in

A Weak Magnetic Field Sensor Based on Nitrogen-Vacancy Color Centers in a Diamond Crystal

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The effect of magnetically dependent absorption of radio-frequency high-frequency radiation detected by the method of optically detected magnetic resonance has been studied, and an explanation for it is proposed. A method of high-frequency excitation of optically detected magnetic resonance in nitrogen-vacancy color centers in a diamond crystal has been experimentally studied that provides magnetometric sensitivity at the level of units of nanoteslas in the 1-Hz band in zero and weak (<0.1 mT) magnetic fields. The method does not involve the use of microwave fields, which makes it attractive for biological and medical applications, primarily for tasks of invasive magnetoencephalography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. Abe and K. Sasaki, J. Appl. Phys. 123 (16), 161101 (2018).

    Article  ADS  Google Scholar 

  2. D. A. Simpson, J.-P. Tetienne, J. M. McCoey, K. Ganesan, L. T. Hall, S. Petrou, R. E. Scholten, and L. C. L. Hollenberg, Sci. Rep. 6, 22797 (2016).

    Article  ADS  Google Scholar 

  3. A. Wickenbrock, H. Zheng, L. Bougas, N. Leefer, S.  Afach, A. Jarmola, V. M. Acosta, and D. Budker, Appl. Phys. Lett. 109 (5), 053505 (2016).

    Article  ADS  Google Scholar 

  4. H. Zheng, Z. Sun, G. Chatzidrosos, C. Zhang, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, A. Wickenbrock, and D. Budker, arXiv:1904.04361 (2019).

  5. A. K. Dmitriev and A. K. Vershovskii, Proc. 7th Annual Workshopon Optically-Pumped Magnetometers, Mainz, Germany, August 14–16,2019, p. 105.

  6. A. K. Vershovskii and A. K. Dmitriev, Tech. Phys. Lett. 41 (4), 393 (2015).

    Article  ADS  Google Scholar 

  7. A. K. Dmitriev and A. K. Vershovskii, Appl. Magn. Reson. 50 (4), 599 (2019).

    Article  Google Scholar 

  8. A. K. Dmitriev and A. K. Vershovskii, J. Opt. Soc. Am. B 33 (3), B1 (2016).

    Article  Google Scholar 

  9. V. M. Acosta, E. Bauch, A. Jarmola, L. J. Zipp, M. P. Ledbetter, and D. Budker, Appl. Phys. Lett. 97 (17), 174104 (2010).

    Article  ADS  Google Scholar 

  10. S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher, D. J. Twitchen, and J. M. Baker, Phys. Rev. B 79 (7), 075203 (2009).

    Article  ADS  Google Scholar 

  11. R. Fischer, A. Jarmola, P. Kehayias, and D. Budker, Phys. Rev. B 87 (12), 125207 (2013).

    Article  ADS  Google Scholar 

  12. H. Clevenson, E. H. Chen, F. Dolde, C. Teale, D. Englund, and D. Braje, Phys. Rev. A 94 (2), 021401 (2016).

    Article  ADS  Google Scholar 

  13. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, Nat. Phys. 7 (10), 789 (2011).

    Article  Google Scholar 

  14. A. K. Dmitriev, H. Y. Chen, G. D. Fuchs, and A. K. Vershovskii, Phys. Rev. A 100 (1), 011801 (2019).

    Article  ADS  Google Scholar 

  15. F. Di Giacomo and E. E. Nikitin, Phys.-Usp. 48 (5), 515 (2005).

    Article  Google Scholar 

  16. E. Boto, S. S. Meyer, V. Shah, O. Alem, S. Knappe, P. Kruger, T. M. Fromhold, M. Lim, P. M. Glover, P.   G. Morris, R. Bowtell, G. R. Barnes, and M. J. Brookes, NeuroImage 149, 404 (2017).

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 19-29-10004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Vershovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershovskii, A.K., Dmitriev, A.K. A Weak Magnetic Field Sensor Based on Nitrogen-Vacancy Color Centers in a Diamond Crystal. Tech. Phys. 65, 1301–1306 (2020). https://doi.org/10.1134/S1063784220080216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080216

Navigation