Skip to main content
Log in

Synthesis and Magnetic Properties of Silver-Doped Iron Dichromium Tetrasulfide

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have synthesized Fe1 – xAgxCr2S4 (0 < x < 0.5) solid solutions via doping of the FeCr2S4 thiochromite with silver. From a break in the composition dependence of the unit-cell parameter for the synthesized materials, the solid solution series has been shown to be limited by x = 0.22. The magnetic properties of the solid solutions have been studied at temperatures from 4 to 300 K in a magnetic field H = 3980 A/m (50 Oe). All of the materials have been shown to be ferrimagnets with a Curie temperature rising with silver concentration: from 185 K at x = 0 to 203 K at x = 0.22. We have determined saturation magnetic moments of the solid solutions and proposed a model that accounts for their observed magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ramirez, A.P., Cava, R.J., and Krajewski, J., Colossal magnetoresistance in Cr-based chalcogenide spinels, Nature, 1997, vol. 386, pp. 156–159.https://doi.org/10.1038/386156a0

    Article  CAS  Google Scholar 

  2. Tokura, Y. and Tomioka, Y., Colossal magnetoresistive manganites, J. Magn. Magn. Mater., 1999, vol. 200, pp. 1–23.https://doi.org/10.1016/S0304-8853(99)00352-2

    Article  CAS  Google Scholar 

  3. Weber, S., Lunkenheimer, P., Fichtl, R., Hemberger, I., et al., Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4, Phys. Rev. Lett., 2006, vol. 96, paper 157202.https://doi.org/10.1103/PhysRevLett.96.157202

  4. Sushkov, A.B., Tchernyshyov, O., Ratcliff, W., Cheong, S.W., and Drew, H.D., Probing spin correlations with phonons in the strongly frustrated magnet ZnCr2O4, Phys. Rev. Lett., 2005, vol. 94, paper 137202.https://doi.org/10.1103/PhysRevLett.94.137202

  5. Bergman, D., Alicea, J., Gull, E., Trebst, S., and Balents, L., Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets, Nat. Phys., 2007, vol. 3, pp. 487–491.https://doi.org/10.1038/nphys622

    Article  CAS  Google Scholar 

  6. Fritsch, V., Hemberger, J., Biittgen, N., Scheidt, E.-W., et al., Spin and orbital frustration in MnSc2S4 and FeSc2S4, Phys. Rev. Lett., 2004, vol. 92, paper 116401.https://doi.org/10.1103/PhysRevLett.92.116401

  7. Krimmel, A., Miicksch, M., Tsurkan, V., Koza, M.M., et al., Vibronic and magnetic excitations in the spin–orbital liquid state of FeSc2S4, Phys. Rev. Lett., 2005, vol. 94, paper 237402.https://doi.org/10.1103/PhysRevLett.94.237402

  8. Krimmel, A., Miicksch, M., Tsurkan, V., Koza, M.M., et al., Magnetic ordering and spin excitations in the frustrated magnet MnSc2S4, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, paper 014413.https://doi.org/10.1103/PhysRevB.73.014413

  9. Tsurkan, V., Hemberger, J., Klemm, M., Klimm, S., Loidl, A., Horn, S., and Tidecks, R., AC susceptibility studies of ferrimagnetic FeCr2S4 single crystals, J. Appl. Phys., 2001, vol. 90, no. 9, pp. 4639–4644.https://doi.org/10.1063/1.1405827

    Article  CAS  Google Scholar 

  10. Dey, K., Indra, A., and Giri, S., Critical behavior of multiferroic sulpho spinel compounds: MCr2S4 (M = Co, Fe), J. Alloys Compd., 2017, vol. 726, pp. 74–80.https://doi.org/10.1016/j.jallcom.2017.07.282

    Article  CAS  Google Scholar 

  11. Dey, K., Indra, A., Karmakar, A., and Giri, S., Multicaloric effect in multiferroic sulpho spinel MCr2S4 (M = Co, Fe), J. Magn. Magn. Mater., 2020, vol. 498, paper 166090.https://doi.org/10.1016/j.jmmm.2019.166090

  12. Wilkinson, C., Knapp, B.M., and Forsyth, J.B., The magnetic structure of Cu0.5Ga0.5Cr2S4, J. Phys. C: Solid State Phys., 1976, vol. 9, no. 21, paper 4021.https://doi.org/10.1088/0022-3719/9/21/021

  13. Shirane, G., Cox, D.E., and Pickart, S.J., Magnetic structures in FeCr2S4 and FeCr2O4, J. Appl. Phys., 1964, vol. 35, no. 3, pp. 954–955.https://doi.org/10.1063/1.1713556

    Article  CAS  Google Scholar 

  14. Lotgering, F.K., Van-Stapele, R.P., Van Der Steen, J.H.A.M., et al., Magnetic properties, conductivity and ionic ordering in Fe1 –xCuxCr2S4, J. Phys. Chem. Solids, 1969, vol. 30, no. 4, pp. 799–804.https://doi.org/10.1016/0022-3697(69)90274-1

    Article  CAS  Google Scholar 

  15. Krupicka, S., Physik der Ferrite und der verwandten magnetishen Oxide, Prague: Academia, 1973.https://doi.org/10.1007/978-3-322-83522-2

  16. Gibart, P., Dormann, I.L., and Pellerin, Y., Magnetic properties of FeCr2S4 and CoCr2S4, Phys. Status Solidi, 1969, vol. 36, no. 2, pp. 187–194.https://doi.org/10.1002/pssb.19690360120

    Article  CAS  Google Scholar 

  17. Palmer, N.M. and Greaves, S., Structural, magnetic and electronic properties of Fe0.5Cu0.5Cr2S4, J. Mater. Chem., 1999, vol. 9, pp. 637–640.https://doi.org/10.1039/A809032G

    Article  CAS  Google Scholar 

  18. Kim, S.J., Kim, W.C., and Kim, C.S., Neutron diffraction and Mossbauer studies on Fe1 –xCr2S4 (x = 0.0, 0.04, 0.08), J. Appl. Phys., 2002, vol. 91, pp. 7935–7937.https://doi.org/10.1063/1.1451884

    Article  CAS  Google Scholar 

  19. Wang, S.G., Li, K.B., Chen, Z., and Zhang, Yu., Small polaron transport in the Zn-doped colossal magnetoresistance materials Fe1 –xZnxCr2S4, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, no. 1, pp. 575–579. https://doi.org/0163-1829/2000/61

    Article  CAS  Google Scholar 

  20. Aminov, T.G., Shabunina, G.G., Novotortsev, V.M., Magnetic properties of (Cu0.5Ga0.5)1 –xFexCr2S4 solid solutions, Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1312–1323.https://doi.org/10.1134/S0036023614110035

    Article  CAS  Google Scholar 

  21. Fichtl, R., Tsurkan, V., et al., Orbital freezing and orbital glass state in FeCr2S4, Phys. Rev. Lett., 2005, vol. 94, paper 027601.https://doi.org/10.1103/PhysRevLett.94.027601

  22. Hemberger, J., Lunkenheimer, P., Fichtl, R., Krug von Nidda, H.-A., et al., Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4, Nature, 2005, vol. 434, pp. 364–367.https://doi.org/10.1038/nature03348

    Article  CAS  PubMed  Google Scholar 

  23. Yamasaki, Y., Miyasaka, S., Kaneko, Y., He, J.-P., et al., Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide, Phys. Rev. Lett., 2006, vol. 96, paper 207204.https://doi.org/10.1103/PhysRevLett.96.207204

  24. Mertinat, M., Tsurkan, V., Samusi, D., Tidecks, R., and Haider, F., Low-temperature structural transition in FeCr2S4, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, paper 100408.https://doi.org/10.1103/PhysRevB.71.100408

  25. Tsurkan, V., Baran, M., Szymczak, R., Szymczak, H., and Tidecks, R., Spin-glass like states in the ferrimagnet FeCr2S4, Phys. B (Amsterdam, Neth.), 2001, vol. 296, pp. 301–305.https://doi.org/10.1016/S0921-4526(00)00760-2

  26. Kamihara, Y., Takeshita, Y., Matoba, M., Kyomen, T., and Itob, M., Transport properties of Fe1 –xMnxCr2S4, Phys. B (Amsterdam, Neth.), 2005, vols. 359–361, pp. 1207–1209.https://doi.org/10.1016/j.physb.2005.01.347

  27. Kim, C.S., Ha, M.Y., and Ko, H.M., Crystallographic and magnetic properties of CoxFe1 –xCr2S4, J. Appl. Phys., 1994, vol. 75, no. 10, pp. 6078–6080.https://doi.org/10.1063/1.355463

    Article  CAS  Google Scholar 

  28. Aminov, T.G., Busheva, E.V., Shabunina, G.G., and Novotortsev, V.M., Magnetic properties of (Cu0.5In0.5)1 –x-FexCr2S4 (x = 0–0.3) (x = 0–0.3) solid solutions, Inorg. Mater., 2018, vol. 54, no. 10, pp. 998–1008.https://doi.org/10.1134/S0020168518100011

    Article  CAS  Google Scholar 

  29. Abelyashev, G.N., Berzhansky, V.N., Fedotov, Yu.V., Polulyakh, S.N., and Sergeev, N.A., Transverse magnetic relaxation of 53Cr nuclei in Ag-doped CdCr2Se4, J. Magn. Magn. Mater., 1998, vol. 184, pp. 222–226.https://doi.org/10.1016/S0304-8853(97)01137-2

    Article  CAS  Google Scholar 

  30. Ferreira, J.M. and Coutinho-Filho, M.D., Magnetic properties of chromium chalcogenide spinel: Cd1 –xAgxCr2Se4 and Hg1 –xAgx Cr2Se4, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no. 18, pp. 12979–12992.https://doi.org/10.1103/physrevb.54.12979

    Article  CAS  Google Scholar 

  31. Ferreira, J.M. and Coutinho-Filho, M.D., Impurity contribution to the low temperature FMR linewidth of Ag-doped CdCr2Se4 single crystals, J. Phys. Colloq., 1978, vol. 39, no. C6, pp. 1007–1009.https://doi.org/10.1051/jphyscol:19786445

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Aminov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminov, T.G., Shabunina, G.G. & Busheva, E.V. Synthesis and Magnetic Properties of Silver-Doped Iron Dichromium Tetrasulfide. Inorg Mater 56, 771–778 (2020). https://doi.org/10.1134/S0020168520080014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520080014

Keywords:

Navigation