Skip to main content
Log in

Preparation of Extra-pure Na2CO3 Powder with Crystallization Techniques for Low-Background Scintillation Crystal Growth

  • Published:
Inorganic Materials Aims and scope

Abstract

A method for the preparation of extra-pure Na2CO3 powder has been developed. The method is based on a fractional crystallization of Na2CO3 from its saturated solutions and its conversion into sodium formate, followed by a melt crystallization. To obtain the final product Na2CO3, the recrystallized sodium formate was thermally decomposed. The contents of Th and U in the purified powder were below 10 ppt, the concentrations of Mn, Co, Ba, and Pb were not above 3 ppb, the concentrations of Cu and Sr were on the level of tens of ppb, and the K concentration was about 200 ppb. The ICP-MS analysis showed that the purity of the obtained powder significantly surpasses that for commercial products in 99.997 and 99.999% purity grades. The sodium carbonate powder thus obtained is going to be used as initial material for growing scintillation single crystals in experiments searching for the neutrinoless double beta decay (0νββ) or dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fukuda, S., Fukuda, Y., Ishitsuka, M., et al., Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data, Phys. Rev. Lett., 2001, vol. 86, no. 25, pp. 5651–5655.https://doi.org/10.1103/PhysRevLett.86.5651

    Article  CAS  PubMed  Google Scholar 

  2. Mohapatra, R.N., Antusch, S., Babu, K.S., et al., Theory of neutrinos: a white paper, Rep. Prog. Phys., 2007, vol. 70, no. 11, pp. 1757–1867.https://doi.org/10.1088/0034-4885/70/11/R02

    Article  CAS  Google Scholar 

  3. Arnold, R., Augier, C., Baker, J.D., et al., Result of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment, Phys. Rev. D: Part. Fields, 2015, vol. 92, no. 7, paper 072011.https://doi.org/10.1103/PhysRevD.92.072011

  4. Giuliani, A. and Poves, A., Neutrinoless double-beta decay, Adv. High Energy Phys., 2012, paper 857016.https://doi.org/10.1103/PhysRevD.92.072011

  5. Alenkov, V. et al., Technical Design Report for the AMoRE 0νββ Decay Search Experiment, 2015. https://arxiv.org/pdf/1512.05957.pdf

  6. Pandey, I.R., Kim, H.J., Lee, H.S., et al., The Na2W2O7 crystal: a crystal scintillator for dark matter search experiment, Eur. Phys. J., 2018, no. 78, paper 973.https://doi.org/10.1140/epjc/s10052-018-6462-0

  7. Pandey, I.R. et al., Growth and characterization of Na2Mo2O7 crystal scintillators for rare event searches, J. Cryst. Growth, 2017, no. 480, pp. 62–66.https://doi.org/10.1016/j.jcrysgro.2017.09.031

  8. Spassky, D.A., Alenkov, V.V., Buzanov, O.A., and Kornoukhov, V.N., Molybdate cryogenic scintillators for rare events search experiments, Engineering of Scintillation Materials and Radiation Technologies, Korzhik M. and Gektin A., Eds., Springer Proceedings in Physics, no. 200, Cham: Springer, 2016, pp. 242–258.https://doi.org/10.1007/978-3-319-68465-9_15

  9. Gileva, O. et al., Investigation of the molybdenum oxide purification for the AMoRE experiment, J. Radioanal. Nucl. Chem., 2017, vol. 314, no. 3, pp. 1695–1700.https://doi.org/10.1007/s10967-017-5568-4

    Article  CAS  Google Scholar 

  10. Shlegel, V.N., Berge, L., and Boiko, R.S., Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program, EPJ Web Conf., 2014, vol. 65, paper 03001.https://doi.org/10.1051/epjconf/20136503001

  11. Khomyakov, A.V., Mozhevitina, E.N., Sadovskii, A.P., Sukharev, V.A., and Avetisov, I.Kh., Purity of MoO3 from different manufacturers, Inorg. Mater., 2016, vol. 52, no. 3, pp. 285–293.https://doi.org/10.1134/S0020168516030055

    Article  CAS  Google Scholar 

  12. Alenkov, V.V., Bazanov, O.A., Dosovitskii, A.E., Kornoukhov, V.N., Mikhlin, A.L., Moseev, P.S. and Khanbekov, N.D., Ultrapurification of isotopically enriched materials for 40Ca100MoO4 crystal growth, Inorg. Mater., 2013, vol. 49, no. 12, pp. 1220–1223.https://doi.org/10.1134/S0020168513120029

    Article  CAS  Google Scholar 

  13. Fairweather, M.J., Rockandel, M.A., Sadan, A., and Swinkels, G.M., CA Patent 4564508, 1986. http://www.freepatentsonline.com/4564508.html

  14. Lukin, P.M., Savel’ev, A.N., Savel’ev, N.I., and Semenova, O.A., RF Patent 2470862, 2012. http://www.freepatent.ru/images/patents/147/2470862/ patent-2470862.pdf

  15. Hazen, W.C., Denham, D.L., Jr., Pruszko., R., Baughman, D.R., and Tacoma, R.B., US Patent USOO6284.005B1, 1998. https://patentimages.storage.googleapis.com/fb/fc/f2/ a2debad89c039b/US6284005.pdf

  16. Pruiss, C.E. and Ford, J., US Patent 3594119A, 1971. https://patentimages.storage.googleapis.com/15/38/ f0/76591bb3e9610f/US3594119.pdf

  17. Geniesse, D.J., Nordahl, T.K., and Hiatt, K.B., US Patent 2017/0029283, 2017. http://www.freepatentsonline.com/20170029283.pdf

  18. Coustrie, F.M. and Anse, M., RF Patent 2466934, 2007. http://www.freepatent.ru/images/patents/112/2466934/ patent-2466934.pdf

  19. Murskii, G.L., Nevinchan, O.M., and Sandu, R.A., RF Patent 2540659, 2013. http://www.freepatent.ru/images/img_patents/2/2540/ 2540659/patent-2540659.pdf

  20. Crom, K.D., Chiang, Y.W., Gerven, T.V., and Santos, R.M., Purification of slag-derived leachate and selective carbonation for high-quality precipitated calcium carbonate synthesis, Chem. Eng. Res. Des., 2015, no. 104, pp. 180–190.https://doi.org/10.1016/j.cherd.2015.07.029

  21. Steinhauser, G., Cleaner production in the Solvay process: general strategies and recent developments, J. Clean. Prod., 2008, vol. 16, no. 7, pp. 833–841.https://doi.org/10.1016/j.jclepro.2007.04.005

  22. Bakele, W., New developments in the production of heavy soda-ash via compacting method, Powder Technol., 2003, vol. 130, nos. 1–3, pp. 253–256.https://doi.org/10.1016/S0032-5910(02)00201-2

    Article  CAS  Google Scholar 

  23. Karyakin, Yu.V. and Angelov, I.I., Chistye khimicheskie veshchestva (Pure Chemical Substances), Moscow: Khimiya, 1974, 4th ed.

  24. Seidell, A., Solubilities of Inorganic and Metal Organic Compounds, Princeton: Van Nostrand, 1958.

    Google Scholar 

  25. Raugh, F., Sodium carbonate, in Kirk-Othmer Encyclopedia of Chemical Technology, vol. 1: A to Alkaloids, New York: Wiley, 2002, pp. 522–528.

    Google Scholar 

  26. Kirgintsev, A.N., Isaenko L.I., and Isaenko V.A. Raspredelenie primesei pri napravlennoi kristallizatsii (Impurity Distribution in Directional Solidification), Novosibirsk: Nauka, 1977.

    Google Scholar 

  27. Pillaca, M. et al., Forced convection by inclined rotary Bridgman method for growth of CoSb3 and FeSb2 single crystals from Sb-rich solution, J. Cryst. Growth, 2017, no. 475, pp. 346–453.https://doi.org/10.1016/j.jcrysgro.2017.07.016

  28. Shin, K., Gileva, O., Kim, Y., et al., Reduction of radioactivity in sodium iodide (NaI) powder by recrystallization method, J. Radioanal. Nucl. Chem., 2018, no. 317, paper 1329.https://doi.org/10.1007/s10967-018-6006-y

Download references

ACKNOWLEDGMENTS

This research was funded by the Institute for Basic Science (Korea) under project code IBS-R016-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gileva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoselov, I.I., Gileva, O.V., Choe, J.S. et al. Preparation of Extra-pure Na2CO3 Powder with Crystallization Techniques for Low-Background Scintillation Crystal Growth. Inorg Mater 56, 867–874 (2020). https://doi.org/10.1134/S0020168520080105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520080105

Keywords:

Navigation