Skip to main content
Log in

Films of (Gd1 –xTbx)2O2S Solid Solutions Produced by Oxide Sulfidation in NH4SCN Vapor and Their Optical Properties

  • Published:
Inorganic Materials Aims and scope

Abstract

(Gd1 – xTbx)2O3 (x = 0.04–0.22) films 115 to 150 nm in thickness have been grown on Si and SiO2 substrates by metal organic chemical vapor deposition (MOCVD) using Ln(dpm)3 precursors. After annealing in air at 800°C for removing carbon-containing impurities, the films were sulfided in NH4SCN vapor at temperatures from 700 to 1000°C in an Ar atmosphere until the formation of (Gd1 – xTbx)2O2S oxysulfides. The surface of the films is formed by grains 60 to 200 nm in size. The measured refractive index of the films is 2.2–2.4 and their estimated optical band gap (Eg) is 4.7–5.0 eV. The optical transmission of the films in the visible spectral region (400–750 nm) reaches 78–84%. The highest photoluminescence (PL) intensity in the oxysulfide films produced under identical conditions has been observed at x = 0.05. The blue component of their PL decreases with increasing terbium content and the emission shifts to the green spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Suponitskii, Yu.L., Kuz’micheva, G.M., and Eliseev, A.A., Rare-earth oxysulfides, Usp. Khim., 1988, vol. 57, no. 3, pp. 367–384.

    CAS  Google Scholar 

  2. Cavouras, D., Kandarakis, I., Bakas, A., et al., An experimental method to determine the effective luminescence efficiency of scintillator–photodetector combinations used in X-ray medical imaging systems, Br. J. Radiol., 1998, vol. 71, no. 847, pp. 766–772.

    CAS  PubMed  Google Scholar 

  3. Popovici, E.J., Muresan, L., Hristea-Simoc, A., et al., Synthesis and characterisation of rare earth oxysulphide phosphors: I. Studies on the preparation of Gd2O2S:Tb phosphor by flux method, Opt. Mater., 2004, vol. 27, pp. 559–565.

    CAS  Google Scholar 

  4. Lei, B., Liu, Y., Zhang, J., et al., Persistent luminescence in rare earth ion-doped gadolinium oxysulfide phosphors, J. Alloys Compd., 2010, vol. 495, pp. 247–253.

    CAS  Google Scholar 

  5. Kumar, G.A., Pokhrel, M., and Sardar, D.K., Absolute quantum yield measurements in Yb/Ho doped M2O2S (M = Y, Gd, La) upconversion phosphor, Mater. Lett., 2013, vol. 98, pp. 63–66.

    CAS  Google Scholar 

  6. Yoon, K., Kwak, J.W., Lee, D.H., et al., Development of a 3-dimensional dosimetry system for Leksell Gamma Knife Perfexion, J. Korean Phys. Soc., 2015, vol. 67, no. 1, pp. 33–37.

    CAS  Google Scholar 

  7. Wang, X., Wang, X., Wang, Z., et al., Photo/cathodoluminescence and stability of Gd2O2S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate, J. Am. Ceram. Soc., 2018, vol. 101, no. 12, pp. 5477–5486.

    CAS  Google Scholar 

  8. Borodulenko, G.P., Bykovskii, Yu.A., Kirillovich, A.A., et al., Optical properties of lanthanum oxysulfide single crystals, Fiz. Tverd. Tela (Leningrad), 1987, vol. 29, no. 23, pp. 888–890.

    CAS  Google Scholar 

  9. Klaassen, D.B.M., Mulder, H., and Ronda, C.R., Excitation mechanism of cathodoluminescence of solid solutions of oxysulfides, J. Electrochem. Soc., 1989, vol. 136, no. 9, pp. 2754–2756.

    CAS  Google Scholar 

  10. Chatterjee, S., Shanker, V., and Ghosh, P.K., Trapping parameters and kinetics in Gd2O2S:Tb phosphor, Solid State Commun., 1991, vol. 80, no. 10, pp. 877–880.

    CAS  Google Scholar 

  11. Shanker, V., Chatterjee, S., and Ghosh, P.K., Electroluminescence in Tb3+ doped Gd2O2S phosphor, J. Appl. Phys., 1992, vol. 72, no. 11, pp. 5416–5419.

    CAS  Google Scholar 

  12. Issler, S.L. and Torardi, C.C., Solid state chemistry and luminescence of X-ray phosphors, J. Alloys Compd., 1995, vol. 229, no. 1, pp. 54–65.

    CAS  Google Scholar 

  13. Kandarakis, I. and Cavouras, D., Experimental and theoretical assessment of the performance of Gd2O2S:Tb and La2O2S:Tb Phosphors and Gd2O2S:Tb–La2O2S:Tb mixtures for X-ray imaging, Eur. Radiol., 2001, vol. 11, no. 6, pp. 1083–1091.

    CAS  PubMed  Google Scholar 

  14. Tao, S., Gu, Z.H., and Nathan, A., Fabrication of Gd2O2S:Tb based phosphor films coupled with photodetectors for X-ray imaging applications, J. Vac. Sci. Technol., A, 2002, vol. 20, no. 3, pp. 1091–1094.

    CAS  Google Scholar 

  15. Chatterjee, S., Shanker, V., and Chander, H., Thermoluminescence of Tb doped Gd2O2S phosphor, Mater. Chem. Phys., 2003, vol. 80, pp. 719–724.

    CAS  Google Scholar 

  16. Park, J.K., Choi, S.R., Noh, S.C., et al., Fabrication and evaluation of a Gd2O2S:Tb phosphor screen film for development of CMOS-based X-ray imaging detector, J. Korean Phys. Soc., 2014, vol. 65, no. 3, pp. 351–354.

    CAS  Google Scholar 

  17. Wang, F., Yang, B., Chen, X., et al., Color-tunable and upconversion luminescence of Gd2O2S:Er,Tb phosphor, Mater. Chem. Phys., 2016, vol. 169, pp. 113–119.

    CAS  Google Scholar 

  18. Michail, C., Valais, I., Fountos, G., et al., Luminescence efficiency of calcium tungstate (CaWO4) under X-ray radiation: comparison with Gd2O2S:Tb, Measurement, 2018, vol. 120, pp. 213–220.

    Google Scholar 

  19. Shanker, V., Ohmi, K., Tanaka, S., and Kobayashi, H., Gd2O2S:Tb phosphor thin films grown by electron beam evaporation and their photoluminescent and electroluminescent characteristics, IEICE Trans. Electron., 1998, vol. E81C, no. 11, pp. 1721–1724.

  20. Steblevskaya, N.I., Medkov, M.A., and Belobeletskaya, M.V., Luminophores and protective coatings based on oxides and oxysulfides of rare-earth elements prepared by extraction pyrolysis, Theor. Found. Chem. Eng., 2014, vol. 48, no. 4, pp. 449–453.

    CAS  Google Scholar 

  21. Amano, R. and Shiokawa, Y., Preparation of lanthanide sulfide films by chemical vapor deposition using β-diketone chelates, J. Radioanal. Nucl. Chem. Lett., 1991, vol. 155, no. 3, pp. 201–210.

    CAS  Google Scholar 

  22. Bakovets, V.V., Sotnikov, A.V., and Korolkov, I.V., Kinetics of phase formation in the Ln–O–S (Ln = La, Gd, Y) systems during oxide sulfidation in ammonium thiocyanate vapor, J. Am. Ceram. Soc., 2017, vol. 100, no. 4, pp. 1320–1329.

    CAS  Google Scholar 

  23. Bakovets, V.V., Levashova, T.M., Filatova, I.Yu., et al., Vapor phase growth of nanostructured yttrium oxysulfide films, Inorg. Mater., 2008, vol. 44, no. 1, pp. 67–69.

    CAS  Google Scholar 

  24. Bakovets, V.V., Belaya, S.V., Lobzareva, M.N., and Maksimovskii, E.A., Kinetics of terbium oxide film growth from Tb(dpm)3 vapor, Inorg. Mater., 2014, vol. 50, no. 6, pp. 576–581.

    Google Scholar 

  25. Sievers, R.E., Eisentraut, K.J., and Springer, C.S., Volatile rare earth chelates of β-diketones, Lanthanide/Actinide Chemistry, Gould, R.F., Ed., Advances in Chemistry Series, no. 71, Washington, DC: Am. Chem. Soc., 1967, pp. 141–154.

  26. Belaya, S.V., Bakovets, V.V., Boronin, A.I., et al., Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate, Inorg. Mater., 2014, vol. 50, no. 4, pp. 410–417.

    Google Scholar 

  27. Powder Diffraction File, Inorganic Phases, Kabekkodu, S., Ed., Newtown Square: International Center for Diffraction Data, 2010.

    Google Scholar 

  28. Baer, S., Scheife, H., Petermann, K., and Huber, G., Sesquioxides as host materials for rare-earth-doped bulk lasers and active waveguides, Rare Earth Oxide Thin Films, Fanciulli M. and Scarel, G., Eds., Topics in Applied Physics, vol. 106, Berlin: Springer, 2007, pp. 401–422.

    Google Scholar 

  29. Bashkirov, S.A., Gremenok, V.F., and Ivanov, V.A., Physical properties of SnS thin films fabricated by hot wall deposition, Semiconductors, 2011, vol. 45, no. 6, pp. 749–752.

    CAS  Google Scholar 

  30. Da Silva, A.A., Cebim, M.A., and Davolos, M.R., Excitation mechanisms and effects of dopant concentration in Gd2O2S:Tb3+ phosphor, J. Lumin., 2008, vol. 128, no. 7, pp. 1165–1168.

    Google Scholar 

  31. Mikhitar’yan, B.V., Luminescence spectra of Gd2O2S–Tb2O2S and Y2O2S–Tb2O2S solid solutions, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Stavropol, 2007.

  32. Flores-Gonzalez, M.A., Ledoux, G., Roux, S., et al., Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method, J. Solid State Chem., 2005, vol. 178, no. 4, pp. 989–997.

    CAS  Google Scholar 

  33. Sharma, R.N. and Rastogi, A.C., Compositional and electronic properties of chemical vapor deposited Y2O3 thin film Si(100) interfaces, J. Appl. Phys., 1993, vol. 74, no. 11, pp. 6691–6702.

    CAS  Google Scholar 

  34. Kiryakov, A.S., Piryazev, D.A., Tarasenko, M.S., and Naumov, N.G., Crystal structures of new chalcogenide-containing yttrium orthosilicates Y2SiO4Q (Q = S, Se), J. Struct. Chem., 2018, vol. 59, no. 3, pp. 635–640.

    CAS  Google Scholar 

  35. Pomelova, T.A., Bakovets, V.V., Korol’kov, I.V., et al., On the abnormal efficiency of the luminescence of submicron-sized phosphor Y2O3:Eu3+, Phys. Solid State, 2014, vol. 56, no. 12, pp. 2496–2506.

    CAS  Google Scholar 

  36. Anan’eva, G.V., Gorokhova, E.I., Demidenko, V.A., et al., Optical properties of Gd2O2S-based ceramic, J. Opt. Technol., 2005, vol. 72, no. 1, pp. 58–61.

    Google Scholar 

  37. Gurvich, A.M., Rentgenolyuminofory i rentgenovskie ekrany (X-ray Phosphors and X-ray Intensifying Screens), Moscow: Atomizdat, 1976, p. 63.

  38. Gorokhova, E.I., Anan’eva, G.V., Demidenko, V.A., et al., Scintillating optical ceramics based on Gd2O2S doped with Pr, Tb, and Eu, Opt. Zh., 2012, vol. 79, no. 1, pp. 58–64.

    Google Scholar 

  39. Hernández-Adame, L., Méndez-Blas, A., Ruiz-García, J., et al., Synthesis, characterization, and photoluminescence properties of Gd:Tb oxysulfide colloidal particles, Chem. Eng. J., 2014, vol. 258, pp. 136–145.

    Google Scholar 

  40. Saraee, K.R.E., Zadeh, M.D., Mostajaboddavati, M., and Kharieky, A.A., Changes of Tb emission by non-radiative energy transfer from Dy in Gd2O2S:Tb phosphor, J. Electron. Mater., 2016, vol. 45, no. 10, pp. 4806–4812.

    CAS  Google Scholar 

  41. Luo, X. and Cao, W., Ethanol-assistant solution combustion method to prepare La2O2S:Yb,Pr nanometer phosphor, J. Alloys Compd., 2008, vol. 460, nos. 1–2, pp. 529–534.

    CAS  Google Scholar 

  42. Gorokhova, E.I., Demidenko, V.A., Khristich, O.A., et al., Luminescence properties of ceramics based on terbium-doped gadolinium oxysulfide, J. Opt. Technol., 2003, vol. 70, no. 10, pp. 693–698.

    CAS  Google Scholar 

  43. Wang, F., Liu, D., Yang, B., and Dai, Y., Characteristics and synthesis mechanism of Gd2O2S:Tb phosphors prepared by vacuum firing method, Vacuum, 2013, vol. 87, pp. 55–59.

    Google Scholar 

  44. Hernandez-Adame, L., Palestino, G., Meza, O., et al., Effect of Tb3+ concentration in the visible emission of terbium-doped gadolinium oxysulfide microspheres, Solid State Sci., 2018, vol. 84, pp. 8–14.

    CAS  Google Scholar 

  45. Ding, Y.-J., Han, P.-D., Wang, L.-X., and Zhang, Q.-T., Preparation, morphology and luminescence properties of Gd2O2S:Tb with different Gd2O3 raw materials, Rare Met., published online August 18, 2015.

  46. Wakefield, G., Keron, H.A., Dobson, P.J., and Hutchison, J.L., Structural and optical properties of terbium oxide nanoparticles, J. Phys. Chem. Solids, 1999, vol. 60, no. 4, pp. 503–508.

    CAS  Google Scholar 

  47. Xu, Z., Yang, J., Hou, Z., et al., Hydrothermal synthesis and luminescent properties of Y2O3:Tb3+ and Gd2O3:Tb3+ microrods, Mater. Res. Bull., 2009, vol. 44, no. 9, pp. 1850–1857.

    CAS  Google Scholar 

  48. Hölsä, J., Leskelä, M., and Niinistö, L., Concentration quenching of Tb3+ luminescence in LaOBr and Gd2O2S phosphors, Mater. Res. Bull., 1979, vol. 14, no. 11, pp. 1403–1409.

    Google Scholar 

  49. Xu, G.X., Qin, H., Huang, T., et al., Synthesis and photoluminescence of Gd2O2S:Tb3+ nanoaggregates via one-pot solvothermal method, Optoelectron. Adv. Mater., Rapid Commun., 2017, vol. 11, nos. 11–12, pp. 703–708.

    CAS  Google Scholar 

  50. Sang, X., Xu, G., Lian, J., et al., A template-free solvothermal synthesis and photoluminescence properties of multicolor Gd2O2S:xTb3+,yEu3+ hollow spheres, Solid State Sci., 2018, vol. 80, pp. 15–21.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education through the state research target for the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, in the field of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belaya.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaya, S.V., Bakovets, V.V., Rakhmanova, M.I. et al. Films of (Gd1 –xTbx)2O2S Solid Solutions Produced by Oxide Sulfidation in NH4SCN Vapor and Their Optical Properties. Inorg Mater 56, 836–846 (2020). https://doi.org/10.1134/S0020168520080038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520080038

Keywords:

Navigation