Skip to main content
Log in

The complex step approximation to the higher order Fréchet derivatives of a matrix function

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The k th Fréchet derivative of a matrix function f is a multilinear operator from a cartesian product of k subsets of the space \(\mathbb {C}^{n\times n}\) into itself. We show that the k th Fréchet derivative of a real-valued matrix function f at a real matrix A in real direction matrices E1, E2, \(\dots \), Ek can be computed using the complex step approximation. We exploit the algorithm of Higham and Relton (SIAM J. Matrix Anal. Appl. 35(3):1019–1037, 2014) with the complex step approximation and mixed derivative of complex step and central finite difference scheme. Comparing with their approach, our cost analysis and numerical experiment reveal that half and seven-eighths of the computational cost can be saved for the complex step and mixed derivative, respectively. When f has an algorithm that computes its action on a vector, the computational cost drops down significantly as the dimension of the problem and k increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abreu, R., Stich, D., Morales, J.: On the generalization of the complex step method. J. Comput. Appl. Math. 241, 84–102 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ahipasaoglu, S.D., Li, X., Natarajan, K.: A convex optimization approach for computing correlated choice probabilities with many alternatives. IEEE Trans. Automat. Control 64(1), 190–205 (2019)

    Article  MathSciNet  Google Scholar 

  3. Al-Mohy, A.H.: A truncated taylor series algorithm for computing the action of trigonometric and hyperbolic matrix functions. SIAM J. Sci. Comput. 40(3), A1696–A1713 (2018)

    Article  MathSciNet  Google Scholar 

  4. Al-Mohy, A.H., Higham, N.J.: Computing the Frechet́, derivative of the matrix exponential, with an application to condition number estimation. SIAM J Matrix Anal. Appl. 30(4), 1639–1657 (2009)

    Article  MathSciNet  Google Scholar 

  5. Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)

    Article  MathSciNet  Google Scholar 

  6. Al-Mohy, A.H., Higham, N.J.: The complex step approximation to the Frechet́ derivative of a matrix function. Numer. Algorithms 53(1), 133–148 (2010)

    Article  MathSciNet  Google Scholar 

  7. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci Comput. 33(2), 488–511 (2011)

    Article  MathSciNet  Google Scholar 

  8. Al-Mohy, A.H., Higham, N.J., Relton, S.D.: Computing the Frechet́ derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci. Comput. 35(4), C394–C410 (2013)

    Article  MathSciNet  Google Scholar 

  9. Amat, S., Busquier, S., Gutiérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157(1), 197–205 (2003)

    Article  MathSciNet  Google Scholar 

  10. Arioli, M., Benzi, M.: A finite element method for quantum graphs. IMA J. Numer. Anal. 38(3), 1119–1163 (2018)

    Article  MathSciNet  Google Scholar 

  11. Benzi, M., Estrada, E., Klymko, C.: Ranking hubs and authorities using matrix functions. Linear Algebra Appl. 438(5), 2447–2474 (2013)

    Article  MathSciNet  Google Scholar 

  12. Cardoso, J.A.R.: Computation of the matrix pth root and its Frechet́ derivative by integrals. Electron. Trans. Numer. Anal. 39, 414–436 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Cox, M.G., Harris, P.M.: Numerical analysis for algorithm design in metrology technical report 11, software support for metrology best practice guide, national physical laboratory, Teddington, UK (2004)

  14. García-Mora, B., Santamaría, C., Rubio, G., Pontones, J.L.: Computing survival functions of the sum of two independent Markov processes: an application to bladder carcinoma treatment. Internat. J. Comput. Math. 91(2), 209–220 (2014)

    Article  MathSciNet  Google Scholar 

  15. Higham, N.J.: Functions of matrices: theory and computation. society for industrial and applied mathematics, Philadelphia, PA USA (2008)

  16. Higham, N.J., Kandolf, P.: Computing the action of trigonometric and hyperbolic matrix functions. SIAM J. Sci. Comput. 39(2), A613–A627 (2017)

    Article  MathSciNet  Google Scholar 

  17. Higham, N.J., Lin, L.: An improved Schur–Padé algorithm for fractional powers of a matrix and their frechet́ derivatives. SIAM J. Matrix Anal. Appl. 34(3), 1341–1360 (2013)

    Article  MathSciNet  Google Scholar 

  18. Higham, N.J., Relton, S.D.: Higher order Frechet́ derivatives of matrix functions and the level-2 condition number. SIAM J. Matrix Anal. Appl. 35(3), 1019–1037 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. 39, 379–402 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Kandolf, P., Relton, S.D.: A block Krylov method to compute the action of the Fréchet derivative of a matrix function on a vector with applications to condition number estimation. SIAM J. Sci. Comput. 39(4), A1416–A1434 (2017)

    Article  Google Scholar 

  21. Kenney, C.S., Laub, A.J.: A Schur–Fréchet algorithm for computing the logarithm and exponential of a matrix. SIAM J. Matrix Anal. Appl. 19 (3), 640–663 (1998)

    Article  MathSciNet  Google Scholar 

  22. Lai, K.-L., Crassidis, J.: Extensions of the first and second complex-step derivative approximations. J. Comput. Appl. Math. 219(1), 276–293 (2008)

    Article  MathSciNet  Google Scholar 

  23. Lai, K.-L., Crassidis, J., Cheng, Y., Kim, J.: New complex-step derivative approximations with application to second-order Kalman filtering. AIAA Guidance, Navigation, and Control Conference and Exhibit, 5944 (2005)

  24. Lantoine, G., Russell, R.P., Dargent, T.: Using multicomplex variables for automatic computation of high-order derivatives. ACM Trans. Math Softw. 38, 16:1–16:21 (2012)

    Article  MathSciNet  Google Scholar 

  25. Lyness, J.N.: Numerical algorithms based on the theory of complex variable. In: Proceedings of the 1967 22-nd National Conference, Washington, D.C. USA, pp 125–133 (1967)

  26. Lyness, J.N., Moler, C.B.: Numerical differentiation of analytic functions. SIAM J. Numer. Anal. 4(2), 202–210 (1967)

    Article  MathSciNet  Google Scholar 

  27. Noferini, V.: A formula for the Fréchet derivative of a generalized matrix function. SIAM J. Matrix Anal. Appl. 38(2), 434–457 (2017)

    Article  MathSciNet  Google Scholar 

  28. Powell, S., Arridge, S.R., Leung, T.: Gradient-based quantitative image reconstruction in ultrasound-modulated optical tomography: first harmonic measurement type in a linearised diffusion formulation. IEEE Trans. Med. Imag. 35 (2015)

  29. Rossignac, J., Vinacua, A.: Steady affine motions and morphs. ACM T. Graphic 30, 116:1–116:16 (2011)

    Article  Google Scholar 

  30. Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1), 110–112 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their insightful comments and suggestions that helped to improve the presentation of this paper.

Funding

This work received funding from the Deanship of Scientific Research at King Khalid University through Research Groups Program under Grant No. R.G.P.1/113/40

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awad H. Al-Mohy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mohy, A.H., Arslan, B. The complex step approximation to the higher order Fréchet derivatives of a matrix function. Numer Algor 87, 1061–1074 (2021). https://doi.org/10.1007/s11075-020-00998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00998-3

Keywords

Navigation