Skip to main content
Log in

Controlling Ag3Sn Plate Formation and Its Effect on the Creep Resistance of Sn–3.0Ag–0.7Cu Lead-Free Solder by Adding Minor Alloying Elements Fe, Co, Te and Bi

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Preventing the formation of large platelets of Ag3Sn intermetallic compounds (IMCs) during solidification of solder joints has become a significant challenge in the design of Sn–Ag–Cu lead-free solder alloys. Large platelets of Ag3Sn are generally considered as undesirable as their presence can create solidification defects and causes mechanical property anisotropy. In the present work, the synergetic effects of adding 0.1 wt% of Fe, Co, Te and 2 wt% Bi to Sn–3.0Ag–0.7Cu (SAC 307) solder are studied in terms of the growth of large platelets Ag3Sn IMCs and the resulting alloy’ creep resistance as well as their thermal behavior. Although minor Fe, Co, Te and Bi alloying elements addition causes large increase in the degree of undercooling from 3.4 to 22.3 °C with maintaining the pasty range and melting temperature at the same levels, the modified SAC307–FeTeCoBi alloy exhibits considerable increase in creep resistance (~ 10 times) and large fracture life-time than SAC (307) solder at same stress levels and testing temperatures. This is attributed to the transition of Ag3Sn IMCs from large platelets into fine needle-like morphology and formation of new (Cu,Co)6Sn5, FeSn2, SnTe IMCs and Bi particles, which could provide more obstacles for dislocation movement at the interphase boundaries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.N. Collins, J. Punch, R. Coyle, M. Reid, R. Popowich, P. Read, D. Fleming, Thermal fatigue and failure analysis of SnAgCu solder alloys with minor Pb additions. IEEE Trans. Compon. Packag. Manuf. Technol. 1(10), 1594 (2011)

    Article  CAS  Google Scholar 

  2. M.N. Collins, E. Dalton, J. Punch, Microstructural influences on thermomechanical fatigue behaviour of third generation high Ag content Pb-free solder alloys. J. Alloys Compd. 688, 164–170 (2016)

    Article  CAS  Google Scholar 

  3. O.M. Abdelhadi, L. Ladani, IMC growth of Sn–3.5Ag/Cu system: combined chemical reaction and diffusion mechanisms. J. Alloys Compd. 537, 87–99 (2012)

    Article  CAS  Google Scholar 

  4. J.H. Lee, D.J. Park, J.N. Heo, Y.H. Lee, D.H. Shin, Y.S. Kim, Reflow characteristics of Sn–Ag matrix in situ composite solders. Scr. Mater. 42, 827–831 (2000)

    Article  CAS  Google Scholar 

  5. M. Kerr, N. Chawla, Creep deformation behavior of Sn–3.5Ag solder/Cu couple at small length scales. Acta Mater. 52, 4527–4535 (2004)

    Article  CAS  Google Scholar 

  6. T. Garami, O. Krammer, Quantitative analyses of Ag3Sn intermetallic compound formation in SnAgCu solder alloys. J. Mat. Sci. Mater. Electron. 26, 8540–8547 (2015)

    Article  CAS  Google Scholar 

  7. K. Zeng, K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. 38, 55–105 (2002)

    Article  Google Scholar 

  8. L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, E.J. Cotts, Growth of Sn and intermetallic compounds in Sn–Ag–Cu solder. J. Electron. Mater. 33, 1429–1439 (2004)

    Article  CAS  Google Scholar 

  9. K.S. Kim, S.H. Huh, K. Suganuma, Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys. Mater. Sci. Eng. A 333, 106–114 (2002)

    Article  Google Scholar 

  10. D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.K. Choi, D.Y. Shih, C. Goldsmith, K.J. Puttlitz, Ag3Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys. J. Mater. Res. 17, 2775–2778 (2002)

    Article  CAS  Google Scholar 

  11. H.Y. Lu, H. Balkan, K.Y. Simon, Microstructure evolution of the Sn–Ag–y%Cu interconnect. Microelectron. Reliab. 46, 1058–1070 (2006)

    Article  CAS  Google Scholar 

  12. S. Kang, A.K. Sarkhel, Lead (Pb)-free solders for electronic packaging. J. Electron. Mater. 23, 701–707 (1994)

    Article  CAS  Google Scholar 

  13. K.S. Kim, S.H. Huh, K. Suganuma, Effects of fourth alloying additive on microstructures and tensile properties of Sn–Ag–Cu alloy and joints with Cu. Microelectron. Reliab. 43(2), 259–267 (2003)

    Article  CAS  Google Scholar 

  14. K.W. Moon, W.J. Boetting, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys. J. Electron. Mater. 29, 1122–1236 (2000)

    Article  CAS  Google Scholar 

  15. B. Illés, B. Horváth, Tin whisker growth from micro-alloyed SAC solders in corrosive climate. J. Alloys Compd. 616, 116–121 (2014)

    Article  CAS  Google Scholar 

  16. I.E. Anderson, J. Walleser, J.L. Harringa, Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints. J. Min. Met. Mater. Soc. 59, 38–43 (2007)

    Article  CAS  Google Scholar 

  17. A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Thermal analysis and mechanical properties of Sn–1.0Ag–0.5Cu solder alloy after modification with SiC nano-sized particles. J. Mater. Sci. Mater. Electron. 24, 2976–2988 (2013)

    Article  CAS  Google Scholar 

  18. M. Kerr, N. Chawla, Creep deformation behavior of a Sn–3.5Ag solder at small-length scale. J. Acta Mater. 52, 4527–4535 (2004)

    Article  CAS  Google Scholar 

  19. G. Ren, M.N. Collins, Improved reliability and mechanical performance of Ag microalloyed Sn58Bi solder alloys. Metals 9(4), 462 (2019)

    Article  CAS  Google Scholar 

  20. G. Ren, M.N. Collins, The effects of antimony additions on microstructures, thermal and mechanical properties of Sn–8Zn–3Bi alloys. Mater. Des. 119, 133–140 (2017)

    Article  CAS  Google Scholar 

  21. G. Ren, I.J. Wilding, M.N. Collins, Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. J. Alloys Compd. 665, 251–260 (2016)

    Article  CAS  Google Scholar 

  22. G. Ren, M.N. Collins, On the mechanism of Sn tunnelling induced intermetallic formation between Sn–8Zn–3Bi solder alloys and Cu substrates. J. Alloys Compd. 791, 559–566 (2019)

    Article  CAS  Google Scholar 

  23. B. Ali, M.F.M. Sabri, I. Jauhari, S.B.M. Said, N.L. Sukiman, I. Jauhari, M.H. Mahdavifard, Microstructural and tensile properties of Fe and Bi added Sn–1Ag–0.5Cu solder alloy under high temperature environment. Microelectron. Reliab. 82, 171–178 (2018)

    Article  CAS  Google Scholar 

  24. Z.L. Ma, S.A. Belyakov, C.M. Gourlay, Effects of cobalt on the nucleation and grain refinement of Sn–3Ag–0.5Cu solders. J. Alloys Compd. 682, 326–337 (2016)

    Article  CAS  Google Scholar 

  25. A.A. El-Daly, A.A. Ibrahiem, M.A. Abdo, N.A.M. Eid, Viscoplastic characterization and mechanical strength of novel Sn–1.7Ag–0.7Cu lead-free solder alloys with microalloying of Te and Co. J. Mater. Sci. Mater. Electron. 30, 12937–12949 (2019)

    Article  CAS  Google Scholar 

  26. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R Rep. 49, 1–60 (2005)

    Article  CAS  Google Scholar 

  27. F. Gao, T. Takemoto, H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing. Mater. Sci. Eng. A 420, 39–46 (2006)

    Article  CAS  Google Scholar 

  28. M.A. Fazal, N.K. Liyana, S. Rubaiee, A. Anas, A critical review on performance, microstructure and corrosion resistance of Pb-free solders. Measurement 134, 897–907 (2019)

    Article  Google Scholar 

  29. X. Chen, J. Zhou, F. Xue, J. Bai, Y. Yao, Microstructures and mechanical properties of Sn–0.1Ag–0.7Cu–(Co, Ni, and Nd) lead-free solders. J. Electron. Mater. 44, 725–732 (2015)

    Article  CAS  Google Scholar 

  30. J. Wu, S. Xue, J. Wang, J. Wang, S. Liu, Effect of Pr addition on properties and Sn whisker growth of Sn–0.3Ag–0.7Cu low-Ag solder for electronic packaging. J. Mater. Sci. Mater. Electron. 28, 10230–10244 (2017)

    Article  CAS  Google Scholar 

  31. G. Saad, S.A. Fayek, A. Fawzy, H.N. Soliman, G. Mohammed, Deformation characteristics of Al-4043 alloy. Mater. Sci. Eng. A 527, 904–910 (2010)

    Article  CAS  Google Scholar 

  32. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Improved creep resistance and thermal behavior of Ni-doped Sn–3.0Ag–0.5Cu lead-free solder. J. Alloys Compd. 587, 32–39 (2014)

    Article  CAS  Google Scholar 

  33. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Enhanced ductility and mechanical strength of Ni-doped Sn–3.0Ag–0.5Cu lead-free solders. Mater. Des. 55, 309–318 (2014)

    Article  CAS  Google Scholar 

  34. A.A. El-Daly, A.M. El-Taher, Improved strength of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solder alloys under controlled processing parameters. Mater. Des. 47, 607–614 (2013)

    Article  CAS  Google Scholar 

  35. M. Yang, Y.H. Ko, J.H. Bang, T.S. Kim, C.W. Lee, M. Li, Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate. Mater. Char. 124, 250–259 (2017)

    Article  CAS  Google Scholar 

  36. S.A. Belyakov, C.M. Gourlay, Heterogeneous nucleation of βSn on NiSn4, PdSn4 and PtSn4. Acta Mater. 71, 56–68 (2014)

    Article  CAS  Google Scholar 

  37. A.A. El-Daly, A.M. El-Taher, S. Gouda, Novel Bi-containing Sn–1.5Ag–0.7Cu lead-free solder alloy with further enhanced thermal property and strength for mobile products. Mater. Des. 65, 796–805 (2015)

    Article  CAS  Google Scholar 

  38. R. Sayyadi, H.N. Moosavy, Physical and mechanical properties of synthesized low Ag/lead-free Sn–Ag–Cu–xBi (x = 0, 1, 2.5, 5 wt%) solders. Mater. Sci. Eng. A 735, 367–377 (2018)

    Article  CAS  Google Scholar 

  39. D.W. Oxtoby, New perspectives on freezing and melting. Nature 347, 725–730 (1990)

    Article  CAS  Google Scholar 

  40. C.Y. Liu, C.H. Lai, M.C. Wang, M.H. Hon, Thermal behavior and microstructure of the intermetallic compounds formed at the Sn–3Ag–0.5Cu/Cu interface after soldering and isothermal aging. J. Cryst. Growth 290, 103–110 (2006)

    Article  CAS  Google Scholar 

  41. A.A. El-Daly, Y. Swilem, A.E. Hammad, Creep properties of Sn–Sb based lead-free solder alloys. J. Alloys Compd. 471, 98–104 (2009)

    Article  CAS  Google Scholar 

  42. A.A. El-Daly, A.M. El-Taher, Evolution of thermal property and creep resistance of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solders. Mater. Des. 51, 789–796 (2013)

    Article  CAS  Google Scholar 

  43. J. Luo, W. Xiong, X. Li, J. Chen, Investigation on high-temperature stress relaxation behavior of Ti–6Al–4V sheet. Mater. Sci. Eng. A 743, 755–763 (2019)

    Article  CAS  Google Scholar 

  44. M. Kassner, M.T. Perez-Prado, Five-power-law creep in single phase metals and alloys. Procedia Mater. Sci. 45, 1–102 (2000)

    Article  CAS  Google Scholar 

  45. A.A. El-Daly, A.Z. Mohamad, A. Fawzy, A.M. El-Taher, Creep behavior of near-peritectic Sn–5Sb solders containing small amount of Ag and Cu. Mater. Sci. Eng. A 528, 1055–1062 (2011)

    Article  CAS  Google Scholar 

  46. N. Hidaka, H. Watanabe, M. Yoshiba, Creep behavior of lead-free Sn–Ag–Cu + Ni–Ge solder alloys. J. Electron. Mater. 38, 185–197 (2006)

    Google Scholar 

  47. S.W. Chen, C.C. Chen, W. Gierlotka, A.R. Zi, P.Y. Chen, H.J. Wu, Phase equilibria of the Sn–Sb binary system. J. Electron. Mater. 37, 670–677 (2009)

    Google Scholar 

  48. A.R. Geranmayeh, R. Mahmudi, Power law indentation creep of Sn–5% Sb solder alloy. J. Mater. Sci. 40, 3361–3366 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. El-Taher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Taher, A.M., Razzk, A.F. Controlling Ag3Sn Plate Formation and Its Effect on the Creep Resistance of Sn–3.0Ag–0.7Cu Lead-Free Solder by Adding Minor Alloying Elements Fe, Co, Te and Bi. Met. Mater. Int. 27, 4294–4305 (2021). https://doi.org/10.1007/s12540-020-00856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00856-w

Keywords

Navigation