Skip to main content
Log in

A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Piezoresistivity is an electromechanical effect characterized by the reversible change in the electrical resistivity with strain. It is useful for electrical-resistance-based strain/stress sensing. The resistivity can be the volumetric, interfacial or surface resistivity, though the volumetric resistivity is most meaningful scientifically. Because the irreversible resistivity change (due to damage or an irreversible microstructural change) adds to the reversible change that occurs at lower strains, the inclusion of the irreversible effect makes the piezoresistivity appear stronger than the inherent effect. This paper focuses on the inherent piezoresistivity that occurs without irreversible resistivity changes. The effect is described by the gage factor (GF), which is defined as the fractional change in resistance per unit strain. The GF can be positive or negative. Strong piezoresistivity involves the magnitude of the fractional change in resistivity much exceeding the strain magnitude. The reversible effect of strain on the electrical connectivity is the primary piezoresistivity mechanism. Giant piezoresistivity is characterized by GF ≥ 500. This critical review with 209 references covers the theory, mechanisms, methodology and status of piezoresistivity, and provides the first review of the emerging field of giant piezoresistivity. Piezoresistivity is exhibited by electrically conductive materials, particularly metals, carbons and composite materials with conductive fillers and nonconductive matrices. They include functional and structural materials. Piezoresistivity enables structural materials to be self-sensing. Unfortunately, GF was incorrectly or unreliably reported in a substantial fraction of the publications, due to the pitfalls systematically presented here. The most common pitfall involves using the two-probe method for the resistance measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chung DDL (2010) Functional materials. World Science Publisher, Singapore Ch. 2 and 3

    Book  Google Scholar 

  2. Chung DDL (2017) Carbon composites. Elsevier, Amsterdam Ch. 6

    Book  Google Scholar 

  3. Chen S, Li Y, Yan D, Wu C, Leventis N (2019) Piezoresistive geopolymer enabled by crack-surface coating. Mater Lett 255:126582. https://doi.org/10.1016/j.matlet.2019.126582

    Article  CAS  Google Scholar 

  4. Yang H, Gong LH, Zheng Z, Yao XF (2020) Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes. Carbon 158:893–903. https://doi.org/10.1016/j.carbon.2019.11.079

    Article  CAS  Google Scholar 

  5. Park JW, Jang J (2015) Fabrication of graphene/free-standing nanofibrillar PEDOT/P(VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon 87:275–281. https://doi.org/10.1016/j.carbon.2015.02.039

    Article  CAS  Google Scholar 

  6. Sang Z, Ke K, Manas-Zloczower I (2019) Design strategy for porous composites aimed at pressure sensor application. Small 15(45):1903487. https://doi.org/10.1002/smll.201903487

    Article  CAS  Google Scholar 

  7. Liu X, Su G, Guo Q, Lu C, Zhou T, Zhou C, Zhang X (2018) Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity. Adv Funct Mater 28(15):1706658. https://doi.org/10.1002/adfm.201706658

    Article  CAS  Google Scholar 

  8. Daňová R, Olejnik R, Slobodian P (2020) Matyas J (2020) The piezoresistive highly elastic sensor based on carbon nanotubes for the detection of breath. Polymers (Basel, Switzerland) 12(3):713. https://doi.org/10.3390/polym12030713

    Article  CAS  Google Scholar 

  9. Tai Y, Mulle M, Aguilar Ventura I, Lubineau G (2015) A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale 7(35):14766–14773. https://doi.org/10.1039/c5nr03155a

    Article  CAS  Google Scholar 

  10. Amjadi M, Kyung K, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26(11):1678–1698. https://doi.org/10.1002/adfm.201504755

    Article  CAS  Google Scholar 

  11. Abhang Y (2018) Review of different tactile sensors using piezoresistivity mechanism. J Mater Sci Eng 7(2):1000432/1–1000432/3. https://doi.org/10.4172/2169-0022.1000432

    Article  CAS  Google Scholar 

  12. Zhang B, Li B, Jiang S (2017) Poly(phenylmethylsiloxane) functionalized multiwalled carbon nanotube/poly(dimethylsiloxane) nanocomposites with high piezoresistivity, low modulus and high conductivity. J Mater Sci Mater Electron 28(9):6897–6906. https://doi.org/10.1007/s10854-017-6390-z

    Article  CAS  Google Scholar 

  13. Al-Handarish Y, Omisore OM, Igbe T, Han S, Li H, Du W, Zhang J, Wang L (2020) A survey of tactile-sensing systems and their applications in biomedical engineering. Adv Mater Sci Eng. https://doi.org/10.1155/2020/4047937

    Article  Google Scholar 

  14. Ansari MZ, Gangadhara BS (2014) Piezoresistivity and its applications in nanomechanical sensors. Proc Mater Sci 5:1308–1313. https://doi.org/10.1016/j.mspro.2014.07.447

    Article  CAS  Google Scholar 

  15. Jiang N, Namilae S, Unnikrishnan V (2020) Silicone/carbon nanotube sheet biofidelic piezoresistive sandwich composites. J Eng Mater Technol 142(1):11009. https://doi.org/10.1115/1.4044649

    Article  CAS  Google Scholar 

  16. Winkler C, Schaefer J, Jager C, Konnerth J, Schwarz U (2020) Influence of polymer/filler composition and processing on the properties of multifunctional adhesive wood bonds from polyurethane prepolymers II: electrical sensitivity in compression. J Adhes 96(1–4):185–206. https://doi.org/10.1080/00218464.2019.1652602

    Article  CAS  Google Scholar 

  17. Lee W, Hong S, Oh H (2019) Characterization of elastic polymer-based smart insole and a simple foot plantar pressure visualization method using 16 electrodes. Sensors 19(1):44/1–44/10. https://doi.org/10.3390/s19010044

    Article  CAS  Google Scholar 

  18. Ahuja P, Ujjain SK, Urita K, Furuse A, Moriguchi I, Kaneko K (2020) Chemically and mechanically robust SWCNT based strain sensor with monotonous piezoresistive response for infrastructure monitoring. Chem Eng J (Amsterdam, Neth) 388:124174. https://doi.org/10.1016/j.cej.2020.124174

    Article  CAS  Google Scholar 

  19. Fu X, Ramos M, Al-Jumaily AM, Meshkinzar A, Huang X (2019) Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J Mater Sci 54(3):2170–2180. https://doi.org/10.1007/s10853-018-2954-4

    Article  CAS  Google Scholar 

  20. Penvern N, Langlet A, Gratton M, Mansion M (2020) Ait Hocine N (2020) Experimental characterization of the quasi-static and dynamic piezoresistive behavior of multi-walled carbon nanotubes/elastomer composites. J Reinf Plast Compos 39(7–8):299–310. https://doi.org/10.1177/0731684420901754

    Article  CAS  Google Scholar 

  21. Liao Y, Duan F, Zhang H, Lu Y, Zeng Z, Liu M, Xu H, Gao C, Zhou L, Jin H et al (2019) Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon 143:743–751. https://doi.org/10.1016/j.carbon.2018.11.074

    Article  CAS  Google Scholar 

  22. Wen S, Chung DDL (2000) Uniaxial tension in carbon fiber reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions. Cem Concr Res 30(8):1289–1294. https://doi.org/10.1016/s0008-8846(00)00304-5

    Article  CAS  Google Scholar 

  23. Vipulanandan C, Mohammed A (2015) Smart cement rheological and piezoresistive behavior for oil well applications. J Petrol Sci Eng 135:50–58. https://doi.org/10.1016/j.petrol.2015.08.015

    Article  CAS  Google Scholar 

  24. Tao J, Wang J, Zeng Q (2020) Comparative study on influences of CNT and GNP on piezoresistivity of cement composites. Mater Lett 259:126858. https://doi.org/10.1016/j.matlet.2019.126858

    Article  CAS  Google Scholar 

  25. Wen S, Chung DDL (2003) A comparative study of steel- and carbon-fibre cement as piezoresistive strain sensors. Adv Cem Res 15(3):119–128. https://doi.org/10.1680/adcr.2003.15.3.119

    Article  CAS  Google Scholar 

  26. Dong W, Li W, Wang K, Han B, Sheng D, Shah SP (2020) Investigation on physicochemical and piezoresistive properties of smart WCNT/cementitious composite exposed to elevated temperatures. Cement Concr Compos 112:103675. https://doi.org/10.1016/j.cemconcomp.2020.103675

    Article  CAS  Google Scholar 

  27. Segura I, Faneca G, Torrents JM, Aguado A (2019) Self-sensing concrete made from recycled carbon fibres. Smart Mater Struct 28(10):105045. https://doi.org/10.1088/1361-665X/ab3d59

    Article  CAS  Google Scholar 

  28. Dong W, Li W, Wang K, Luo Z, Sheng D (2020) Self-sensing capabilities of cement-based sensor with layer-distributed conductive rubber fibres. Sens Actuators A 301:111763. https://doi.org/10.1016/j.sna.2019.111763

    Article  CAS  Google Scholar 

  29. Dong W, Li W, Long G, Tao Z, Li J, Wang K (2019) Electrical resistivity and mechanical properties of cementitious composite incorporating conductive rubber fibres. Smart Mater Struct 28(8):85013. https://doi.org/10.1088/1361-665X/ab282a

    Article  CAS  Google Scholar 

  30. Zhang L, Ding S, Han B, Yu X, Ni Y (2019) Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/nanocarbon black composite filler. Compos A 119:8–20. https://doi.org/10.1016/j.compositesa.2019.01.010

    Article  CAS  Google Scholar 

  31. Wen S, Chung DDL (2007) Electrical-resistance-based damage self-sensing in carbon fiber reinforced cement. Carbon 45(4):710–716. https://doi.org/10.1016/j.carbon.2006.11.029

    Article  CAS  Google Scholar 

  32. Chung DDL (2003) Damage in cement-based materials, studied by electrical resistance measurement. Mater Sci Eng R 42(1):1–40. https://doi.org/10.1016/s0927-796x(03)00037-8

    Article  Google Scholar 

  33. Ramirez M, Chung DDL (2016) Electromechanical, self-sensing and viscoelastic behavior of carbon fiber tows. Carbon 110:8–16. https://doi.org/10.1016/j.carbon.2016.08.095

    Article  CAS  Google Scholar 

  34. Wang H, Liu J, Gao X, Li Y, Cai J, Wang J (2019) Influence of salt freeze-thaw cycles on the damage and the following electrical and self-sensing performance of carbon nanofibers concrete. Mater Res Express 6(2):025705/1–025705/11. https://doi.org/10.1088/2053-1591/aaf094

    Article  CAS  Google Scholar 

  35. Alsaadi A, Meredith J, Swait T, Curiel-Sosa JL, Jia Y, Hayes S (2019) Structural health monitoring for woven fabric CFRP laminates. Compos B 174:107048. https://doi.org/10.1016/j.compositesb.2019.107048

    Article  CAS  Google Scholar 

  36. Wen S, Chung DDL (2006) Effects of strain and damage on the strain sensing ability of carbon fiber cement. J Mater Civ Eng 18(3):355–360. https://doi.org/10.1061/(asce)0899-1561(2006)18:3(355)

    Article  CAS  Google Scholar 

  37. Wang S, Kowalik DP, Chung DDL (2002) Effects of the temperature, humidity and stress on the interlaminar interface of carbon fiber polymer-matrix composites, studied by contact electrical resistivity measurement. J. Adhes 78(2):189–200. https://doi.org/10.1080/00218460210384

    Article  CAS  Google Scholar 

  38. Wang S, Chung DDL (2005) The interlaminar interface of a carbon fiber epoxy–matrix composite as an impact sensor. J Mater Sci 40:1863–1867. https://doi.org/10.1007/s10853-005-1205-7

    Article  CAS  Google Scholar 

  39. Fu X, Chung DDL (1998) Effects of water-cement ratio, curing age, silica fume, polymer admixtures, steel surface treatments, and corrosion on bond between concrete and steel reinforcing bars. ACI Mater J 95(6):725–734. https://doi.org/10.14359/417

    Article  CAS  Google Scholar 

  40. Kim KD, Chung DDL (2005) Electrically conductive adhesive and soldered joints under compression. J Adhes Sci Technol 19(11):1003–1023. https://doi.org/10.1163/1568561054950988

    Article  CAS  Google Scholar 

  41. Wang S, Chung DDL (2006) Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement. Carbon 44(13):2739–2751. https://doi.org/10.1016/j.carbon.2006.03.034

    Article  CAS  Google Scholar 

  42. Zhu S, Chung DDL (2007) Analytical model of piezoresistivity for strain sensing in carbon fiber polymer-matrix structural composite under flexure. Carbon 45(8):1606–1613. https://doi.org/10.1016/j.carbon.2007.04.012

    Article  CAS  Google Scholar 

  43. Wen S, Chung DDL (2006) Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon 44(8):1496–1502. https://doi.org/10.1016/j.carbon.2005.12.009

    Article  CAS  Google Scholar 

  44. Zhu S, Chung DDL (2007) Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure. J Mater Sci 42(15):6222–6233. https://doi.org/10.1007/s10853-006-1131-3

    Article  CAS  Google Scholar 

  45. Ueda M, Yamaguchi T, Ohno T, Kato Y, Nishimura T (2019) FEM-aided identification of gauge factors of unidirectional CFRP through multi-point potential measurements. Adv Compos Mater 28(1):37–55. https://doi.org/10.1080/09243046.2017.1423531

    Article  CAS  Google Scholar 

  46. Celebonovic V, Nikolic MG (2018) The Hubbard Model and piezoresistivity. J Low Temp Phys 190(3–4):191–199. https://doi.org/10.1007/s10909-017-1830-y

    Article  CAS  Google Scholar 

  47. Nakamura K, Toriyama T, Sugiyama S (2011) First-principles simulation on piezoresistivity in alpha and beta silicon carbide nanosheets. Jpn J Appl Phys 50(6):06GE05/1–06GE05/6. https://doi.org/10.7567/jjap.50.06ge05

    Article  CAS  Google Scholar 

  48. Ren X, Burton J, Seidel GD, Lafdi K (2015) Computational multiscale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites. Int J Solids Struct 54:121–134. https://doi.org/10.1016/j.ijsolstr.2014.10.034

    Article  CAS  Google Scholar 

  49. Hu B, Hu N, Li Y, Akagi K, Yuan W, Watanabe T, Cai Y (2012) Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res Lett 7(1):402, 11pp

  50. Gong S, Wu D, Li Y, Jin M, Xiao T, Wang Y, Xiao Z, Zhu Z, Li Z (2018) Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite. Carbon 137:188–195

    Article  CAS  Google Scholar 

  51. Koo GM, Tallman TN (2020) Higher-order resistivity-strain relations for self-sensing nanocomposites subject to general deformations. Compos B 190:107907. https://doi.org/10.1016/j.compositesb.2020.107907

    Article  CAS  Google Scholar 

  52. Kim I, Kim HS, Ryu H (2019) Piezoresistivity of InAsP nanowires: role of crystal phases and phosphorus atoms in strain-induced channel conductances. Molecules (Basel, Switzerland) 24(18):3249. https://doi.org/10.3390/molecules24183249

    Article  CAS  Google Scholar 

  53. Zhang T, Wang G, Wang C, Tang C, Zhang F, Luo Y (2019) Effect of AuNP-AuNP vdW interaction on the mechanics and piezoresistivity of AuNP-polymer nanocomposite. AIP Adv 9(5):055212/1–055212/8. https://doi.org/10.1063/1.5099523

    Article  CAS  Google Scholar 

  54. Wang M, Gurunathan R, Imasato K, Geisendorfer NR, Jakus AE, Peng J, Shah RN, Grayson M, Snyder GJ (2019) Percolation model for piezoresistivity in conductor-polymer composites. Adv Theory Simul. https://doi.org/10.1002/adts.201800125

    Article  Google Scholar 

  55. Oskouyi AB, Sundararaj U, Mertiny P (2014) Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials (Basel, Switzerland) 7(4):2501–2521. https://doi.org/10.3390/ma7042501

    Article  CAS  Google Scholar 

  56. Gbaguidi A, Namilae S, Kim D (2019) Stochastic percolation model for the effect of nanotube agglomeration on the conductivity and piezoresistivity of hybrid nanocomposites. Computat Mater Sci 166:9–19. https://doi.org/10.1016/j.commatsci.2019.04.045

    Article  CAS  Google Scholar 

  57. Oliva-Aviles AI, Aviles F, Seidel GD, Sosa V (2013) On the contribution of carbon nanotube deformation to piezoresistivity of carbon nanotube/polymer composites. Compos B 47:200–206. https://doi.org/10.1016/j.compositesb.2012.09.091

    Article  CAS  Google Scholar 

  58. Ren X, Seidel GD (2013) Computational micromechanics modeling of inherent piezoresistivity in carbon nanotube-polymer nanocomposites. J Intell Mater Syst Struct 24(12):1459–1483. https://doi.org/10.1177/1045389X12471442

    Article  CAS  Google Scholar 

  59. Gong S, Zhu ZH (2015) Giant piezoresistivity in aligned carbon nanotube nanocomposite: account for nanotube structural distortion at crossed tunnel junctions. Nanoscale 7(4):1339–1348. https://doi.org/10.1039/C4NR05656F

    Article  CAS  Google Scholar 

  60. Guan X, Wen M, Li H, Ou J (2019) The influence of firing procedures on strain sensitivity of thick-film resistors. Ceram Int 45(6):6836–6841. https://doi.org/10.1016/j.ceramint.2018.12.177

    Article  CAS  Google Scholar 

  61. Qiao Z, Ma Y, Chen X, Chen M, Hong K, Li Z, Lu G, Wang Z (2020) Mechanical and piezo-resistive properties of functionalized multi-walled carbon nanotubes/styrene-ethylene-butadiene-styrene composites. Polym Compos 41(5):2082–2093. https://doi.org/10.1002/pc.25522

    Article  CAS  Google Scholar 

  62. Devarajan U, Singh S, Esakki Muthu S, Kalai Selvan G, Sivaprakash P, Roy Barman S, Arumugam S (2014) Investigations on the electronic transport and piezoresistivity properties of Ni2−xMn1+xGa (x = 0 and 0.15) Heusler alloys under hydrostatic pressure. Appl Phys Lett 105(25):252401/1–252401/4

    Article  CAS  Google Scholar 

  63. Sezen M, Register JT, Yao Y, Glisic B, Loo Y (2016) Eliminating piezoresistivity in flexible conducting polymers for accurate temperature sensing under dynamic mechanical deformations. Small 12(21):2832–2838. https://doi.org/10.1002/smll.201600858

    Article  CAS  Google Scholar 

  64. Jheng L, Hsiao C, Ko W, Hsu SL, Huang Y (2019) Conductive films based on sandwich structures of carbon nanotubes/silver nanowires for stretchable interconnects. Nanotechnology 30(23):235201. https://doi.org/10.1088/1361-6528/ab0483

    Article  CAS  Google Scholar 

  65. Wang D, Chung DDL (2013) Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing. Carbon 60(1):129–138. https://doi.org/10.1016/j.carbon.2013.04.005

    Article  CAS  Google Scholar 

  66. Wang X, Chung DDL (1997) Sensing delamination in a carbon fiber polymer-matrix composite during fatigue by electrical resistance measurement. Polym Compos 18(6):692–700. https://doi.org/10.1002/pc.10322

    Article  CAS  Google Scholar 

  67. Wang X, Chung DDL (1999) Fiber breakage in polymer-matrix composite during static and dynamic loading, studied by electrical resistance measurement. J Mater Res 14(11):4224–4229. https://doi.org/10.1557/PROC-503-81

    Article  CAS  Google Scholar 

  68. Lekawa-Raus A, Koziol KKK, Windle AH (2014) Piezoresistive effect in carbon nanotube fibers. ACS Nano 8(11):11214–11224. https://doi.org/10.1021/nn503596f

    Article  CAS  Google Scholar 

  69. Anike JC, Belay K, Abot JL (2019) Effect of twist on the electromechanical properties of carbon nanotube yarns. Carbon 142:491–503. https://doi.org/10.1016/j.carbon.2018.10.067

    Article  CAS  Google Scholar 

  70. Su S, Chen Y, Wu J, Chen W, Cheng W, Yao YD (2006) The straining effect on tunneling resistance of Co/AlOx/Co/IrMn junctions. Appl Phys Lett 89(22):222510/1–222510/3. https://doi.org/10.1063/1.2399936

    Article  CAS  Google Scholar 

  71. Lange D, Roca-Cabarrocas P, Triantafyllidis N, Daineka D (2016) Piezoresistivity of thin film semiconductors with application to thin film silicon solar cells. Solar Energy Mater Solar Cells 145(Part_2):93–103. https://doi.org/10.1016/j.solmat.2015.09.014

    Article  CAS  Google Scholar 

  72. Thuau D, Begley K, Dilmurat R, Ablat A, Wantz G, Ayela C, Abbas M (2020) Exploring the critical thickness of organic semiconductor layer for enhanced piezoresistive sensitivity in field-effect transistor sensors. Materials (Basel, Switzerland) 13(7):1583. https://doi.org/10.3390/ma13071583

    Article  CAS  Google Scholar 

  73. Thanh N, Toan D, Riduan Md FA, Hoang-Phuong P, Tuan-Khoa N, Nam-Trung N et al (2019) Giant piezoresistive effect by optoelectronic coupling in a heterojunction. Nat Commun 10(1):4139. https://doi.org/10.1038/s41467-019-11965-5

    Article  CAS  Google Scholar 

  74. Riyajuddin S, Kumar S, Gaur SP, Sud A, Maruyama T, Ali ME, Ghosh K (2020) Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure. Nanotechnology 31(29):295501. https://doi.org/10.1088/1361-6528/ab7b88

    Article  Google Scholar 

  75. Yao Y, Duan X, Luo J, Liu T (2017) Two-probe versus van der Pauw method in studying the piezoresistivity of single-wall carbon nanotube thin films. Nanotechnology 28(44):445501/1–445501/10

    Article  CAS  Google Scholar 

  76. Wen S, Chung DDL (2007) Piezoresistivity-based strain sensing in carbon fiber reinforced cement. ACI Mater J 104(2):171–179

    Google Scholar 

  77. Vipulanandan C, Mohammed A (2019) Smart cement compressive piezoresistive, stress-strain, and strength behavior with nanosilica modification. J Test Eval 47(2):1479–1501. https://doi.org/10.1520/JTE20170105

    Article  CAS  Google Scholar 

  78. Wen S, Chung DDL (2006) Spatially resolved self-sensing of strain and damage in carbon fiber cement. J Mater Sci 41(15):4823–4831. https://doi.org/10.1007/s10853-006-0028-5

    Article  CAS  Google Scholar 

  79. Wang D, Wang S, Chung DDL, Chung JH (2006) Sensitivity of the two-dimensional electric potential/resistance method for damage monitoring in carbon fiber polymer-matrix composite. J Mater Sci 41(15):4839–4846. https://doi.org/10.1007/s10853-006-0062-3

    Article  CAS  Google Scholar 

  80. Zhang D, Ye L, Wang D, Tang Y, Mustapha S, Chen Y (2012) Assessment of transverse impact damage in GF/EP laminates of conductive nanoparticles using electrical resistivity tomography. Compos A 43(9):1587–1598. https://doi.org/10.1016/j.compositesa.2012.04.012

    Article  CAS  Google Scholar 

  81. Karhunen K, Seppaenen A, Lehikoinen A, Monteiro PJM, Kaipio JP (2010) Electrical resistance tomography imaging of concrete. Cem Concr Res 40(1):137–145. https://doi.org/10.1016/j.cemconres.2009.08.023

    Article  CAS  Google Scholar 

  82. Reichling K, Raupach M, Klitzsch N (2015) Determination of the distribution of electrical resistivity in reinforced concrete structures using electrical resistivity tomography. Mater Corros 66(8):763–771. https://doi.org/10.1002/maco.201407763

    Article  CAS  Google Scholar 

  83. Wen S, Chung DDL (2001) Electric polarization in carbon fiber reinforced cement. Cem Concr Res 31(2):141–147. https://doi.org/10.1016/S0008-8846(00)00382-3

    Article  CAS  Google Scholar 

  84. Cao J, Chung DDL (2004) Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement. Cem Concr Res 34(3):481–485. https://doi.org/10.1016/j.cemconres.2003.09.003

    Article  CAS  Google Scholar 

  85. Fu X, Ma E, Chung DDL, Anderson WA (1997) Self-monitoring in carbon fiber reinforced mortar by reactance measurement. Cem Concr Res 27(6):845–852. https://doi.org/10.1016/S0008-8846(97)83277-2

    Article  CAS  Google Scholar 

  86. Shirodkar N, Rocker S, Seidel GD (2019) Strain and damage sensing of polymer bonded mock energetics via piezoresistivity from carbon nanotube networks. Smart Mater Struct 28(10):104006. https://doi.org/10.1088/1361-665X/ab3dcd

    Article  CAS  Google Scholar 

  87. Vipulanandan C, Mohammed A (2017) Rheological properties of piezoresistive smart cement slurry modified with iron- oxide nanoparticles for oil–well applications. J Test Eval 45(6):2050–2060. https://doi.org/10.1520/JTE20150443

    Article  CAS  Google Scholar 

  88. Sanli A, Kanoun O (2020) Electrical impedance analysis of carbon nanotube/epoxy nanocomposite-based piezoresistive strain sensors under uniaxial cyclic static tensile loading. J Compos Mater 54(6):845–855. https://doi.org/10.1177/0021998319870592

    Article  CAS  Google Scholar 

  89. Dong W, Li W, Shen L, Sheng D (2019) Piezoresistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres. Mater Des 182:108012. https://doi.org/10.1016/j.matdes.2019.108012

    Article  CAS  Google Scholar 

  90. Cheng X, Wang L, Gao F, Yang W, Du Z, Chen D, Chen S (2019) The N and P co-doping-induced giant negative piezoresistance behaviors of SiC nanowires. J Mater Chem C 7(11):3181–3189. https://doi.org/10.1039/C8TC06623J

    Article  CAS  Google Scholar 

  91. Patole SP, Reddy SK, Schiffer A, Askar K, Prusty BG, Kumar S (2019) Piezoresistive and mechanical characteristics of graphene foam nanocomposites. ACS Appl Nano Mater 2(3):1402–1411. https://doi.org/10.1021/acsanm.8b02306

    Article  CAS  Google Scholar 

  92. Wang F, Zhang S, Wang L, Zhang Y, Lin J, Zhang X, Chen T, Lai Y, Pan G, Sun L (2018) An ultrahighly sensitive and repeatable flexible pressure sensor based on PVDF/PU/MWCNT hierarchical framework-structured aerogels for monitoring human activities. J Mater Chem C 6(46):12575–12583. https://doi.org/10.1039/C8TC04652B

    Article  CAS  Google Scholar 

  93. Fu Y, Li Y, Liu Y, Huang P, Hu N, Fu S (2018) High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite. ACS Appl Mater Interfaces 10(41):35503–35509. https://doi.org/10.1021/acsami.8b09424

    Article  CAS  Google Scholar 

  94. Yu S, Wang X, Xiang H, Zhu L, Tebyetekerwa M, Zhu M (2018) Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140:1–9. https://doi.org/10.1016/j.carbon.2018.08.028

    Article  CAS  Google Scholar 

  95. Cruz S, Rocha LA, Viana JC (2017) Piezo-resistive behavior at high strain levels of PEDOT:PSS printed on a flexible polymeric substrate by a novel surface treatment. J Mater Sci: Mater Electron 28(3):2563–2573. https://doi.org/10.1007/s10854-016-5832-3

    Article  CAS  Google Scholar 

  96. Li X, Chen S, Ying P, Gao F, Liu Q, Shang M, Yang W (2016) A giant negative piezoresistance effect in 3C-SiC nanowires with B dopants. J Mater Chem C 4(27):6466–6472. https://doi.org/10.1039/C6TC01882C

    Article  CAS  Google Scholar 

  97. Zhao S, Li J, Cao D, Gao Y, Huang W, Zhang G, Sun R, Wong C (2016) Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. J Mater Chem C 4(27):6666–6674. https://doi.org/10.1039/C6TC01728B

    Article  CAS  Google Scholar 

  98. Zhang L, Wang Y, Wei Y, Xu W, Fang D, Zhai L, Lin K, An L (2008) A silicon carbonitride ceramic with anomalously high piezoresistivity. J Am Ceram Soc 91(4):1346–1349. https://doi.org/10.1111/j.1551-2916.2008.02275.x

    Article  CAS  Google Scholar 

  99. Wang S, Chung DDL (2000) Piezoresistivity in continuous carbon fiber polymer-matrix composite. Polym Compos 21(1):13–19. https://doi.org/10.1002/pc.10160

    Article  Google Scholar 

  100. Wang S, Wang D, Chung DDL, Chung JH (2006) Method of sensing impact damage in carbon fiber polymer-matrix composite by electrical resistance measurement. J Mater Sci 41(8):2281–2289. https://doi.org/10.1007/s10853-006-7172-9

    Article  CAS  Google Scholar 

  101. Christ JF, Aliheidari N, Ameli A, Potschke P (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des 131:394–401. https://doi.org/10.1016/j.matdes.2017.06.011

    Article  CAS  Google Scholar 

  102. Huang K, Dong S, Yang J, Yan J, Xue Y, You X, Hu J, Gao L, Zhang X, Ding Y (2019) Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon 143:63–72. https://doi.org/10.1016/j.carbon.2018.11.008

    Article  CAS  Google Scholar 

  103. Xu J, Zhang D (2017) Pressure-sensitive properties of emulsion modified graphene nanoplatelets/cement composites. Cem Concr Compos 84:74–82. https://doi.org/10.1016/j.cemconcomp.2017.07.025

    Article  CAS  Google Scholar 

  104. Azizkhani MB, Kadkhodapour J, Rastgordani S, Anaraki AP, Shirkavand Hadavand B (2019) Highly sensitive, stretchable chopped carbon fiber/silicon rubber based sensors for human joint motion detection. Fibers Polym 20(1):35–44. https://doi.org/10.1007/s12221-019-8662-0

    Article  CAS  Google Scholar 

  105. Montazerian H, Dalili A, Milani AS, Hoorfar M (2019) Piezoresistive sensing in chopped carbon fiber embedded PDMS yarns. Compos B 164:648–658. https://doi.org/10.1016/j.compositesb.2019.01.090

    Article  CAS  Google Scholar 

  106. Chung DDL (2020) Materials for electromagnetic interference shielding. Mater Chem Phys 255:123587. https://doi.org/10.1016/j.matchemphys.2020.123587

    Article  CAS  Google Scholar 

  107. Hwang M, Kang L (2019) Analysis of important fabrication factors that determine the sensitivity of MWCNT/epoxy composite strain sensors. Materials (Basel, Switzerland) 12(23):3875. https://doi.org/10.3390/ma12233875

    Article  CAS  Google Scholar 

  108. Poudel A, Karode N, McGorry P, Walsh P, Lyons JG, Kennedy J, Matthews S, Coffey A (2019) Processing of nanocomposites using supercritical fluid assisted extrusion for stress/strain sensing applications. Compos B 165:397–405. https://doi.org/10.1016/j.compositesb.2019.01.098

    Article  CAS  Google Scholar 

  109. Chung DDL (2005) Dispersion of short fibers in cement. J Mater Civ Eng 17(4):379–383. https://doi.org/10.1061/(ASCE)0899-1561

    Article  CAS  Google Scholar 

  110. Dong W, Li W, Tao Z, Wang K (2019) Piezoresistive properties of cement-based sensors: review and perspective. Constr Build Mater 203:146–163. https://doi.org/10.1016/j.conbuildmat.2019.01.081

    Article  CAS  Google Scholar 

  111. Chung DDL (2002) Improving cement-based materials by using silica fume. J Mater Sci 37(4):673–682. https://doi.org/10.1023/A:1013889725971

    Article  CAS  Google Scholar 

  112. Deng L, Ma Y, Hu J, Yin S, Ouyang X, Fu J, Liu A, Zhang Z (2019) Preparation and piezoresistive properties of carbon fiber-reinforced alkali-activated fly ash/slag mortar. Constr Build Mater 222:738–749. https://doi.org/10.1016/j.conbuildmat.2019.06.134

    Article  CAS  Google Scholar 

  113. Zheng H, An W, Wu J, Zhao Z, Xiao S (2019) Piezoresistivity of polymer-matrix carbon fiber filament in plane stress state. Mater Res Express 6(8):85602 pp. https://doi.org/10.1088/2053-1591/ab1b7e

  114. Li W, Dong W, Shen L, Castel A, Shah SP (2020) Conductivity and piezoresistivity of nano-carbon black (NCB) enhanced functional cement-based sensors using polypropylene fibres. Mater Lett 270:127736. https://doi.org/10.1016/j.matlet.2020.127736

    Article  CAS  Google Scholar 

  115. Bai M, Zhai Y, Liu F, Wang Y, Luo S (2019) Stretchable graphene thin film enabled yarn sensors with tunable piezoresistivity for human motion monitoring. Sci Rep 9(1):18644. https://doi.org/10.1038/s41598-019-55262-z

    Article  CAS  Google Scholar 

  116. Zhang H, Sun X, Hubbe M, Pal L (2019) Flexible and pressure-responsive sensors from cellulose fibers coated with multiwalled carbon nanotubes. ACS Appl Electron Mater 1(7):1179–1188. https://doi.org/10.1021/acsaelm.9b00182

    Article  CAS  Google Scholar 

  117. Das S, Yokozeki T (2020) Polyaniline-based multifunctional glass fiber reinforced conductive composite for strain monitoring. Polym Test 87:106547. https://doi.org/10.1016/j.polymertesting.2020.106547

    Article  CAS  Google Scholar 

  118. Can-Ortiz A, Abot JL, Aviles F (2019) Electrical characterization of carbon-based fibers and their application for sensing relaxation-induced piezoresistivity in polymer composites. Carbon 145:119–130. https://doi.org/10.1016/j.carbon.2018.12.108

    Article  CAS  Google Scholar 

  119. Hao B, Ma Q, Yang S, Mader E, Ma P (2016) Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating. Compos Sci Technol 129:38–45. https://doi.org/10.1016/j.compscitech.2016.04.012

    Article  CAS  Google Scholar 

  120. Fernberg P, Nilsson G, Joffe R (2009) Piezoresistive performance of long-fiber composites with carbon nanotube doped matrix. J Intell Mater Syst Struct 20(9):1017–1023. https://doi.org/10.1177/1045389X08097387

    Article  CAS  Google Scholar 

  121. Aly K, Li A, Bradford PD (2017) Compressive piezoresistive behavior of carbon nanotube sheets embedded in woven glass fiber reinforced composites. Compos B 116:459–470. https://doi.org/10.1016/j.compositesb.2016.11.002

    Article  CAS  Google Scholar 

  122. Loyola BR, La SV, Loh KJ (2010) In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J Mater Sci 45(24):6786–6798. https://doi.org/10.1007/s10853-010-4775-y

    Article  CAS  Google Scholar 

  123. Tapeinos IG, Miaris A, Mitschang P, Alexopoulos ND (2012) Carbon nanotube-based polymer composites: a trade-off between manufacturing cost and mechanical performance. Compos Sci Technol 72(7):774–787. https://doi.org/10.1016/j.compscitech.2012.02.004

    Article  CAS  Google Scholar 

  124. Dubey KA, Mondal RK, Kumar J, Melo JS, Bhardwaj YK (2020) Enhanced electromechanics of morphology-immobilized co-continuous polymer blend/carbon nanotube high-range piezoresistive sensor. Chem Eng J (Amsterdam, Netherlands) 389:124112 pp. https://doi.org/10.1016/j.cej.2020.124112

  125. Thaler D, Aliheidari N, Ameli A (2019) Mechanical, electrical, and piezoresistivity behaviors of additively manufactured acrylonitrile butadiene styrene/carbon nanotube nanocomposites. Smart Mater Struct 28(8):84004. https://doi.org/10.1088/1361-665X/ab256e

    Article  CAS  Google Scholar 

  126. Vicente J, Costa P, Lanceros-Mendez S, Abete JM, Iturrospe A (2019) Electromechanical properties of PVDF-based polymers reinforced with nanocarbonaceous fillers for pressure sensing applications. Materials (Basel, Switzerland) 12(21):3545. https://doi.org/10.3390/ma12213545

    Article  CAS  Google Scholar 

  127. Thomas AJ, Kim JJ, Tallman TN, Bakis CE (2019) Damage detection in self-sensing composite tubes via electrical impedance tomography. Compos B 177:107276. https://doi.org/10.1016/j.compositesb.2019.107276

    Article  CAS  Google Scholar 

  128. Dong W, Li W, Lu N, Qu F, Vessalas K, Sheng D (2019) Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content. Compos B 178:107488. https://doi.org/10.1016/j.compositesb.2019.107488

    Article  CAS  Google Scholar 

  129. Jan R, Habib A, Khan ZM, Khan MB, Anas M, Nasir A, Nauman S (2017) Liquid exfoliated graphene smart layer for structural health monitoring of composites. J Intell Mater Syst Struct 28(12):1565–1574. https://doi.org/10.1177/1045389X16672729

    Article  CAS  Google Scholar 

  130. Tang Y, Guo Q, Chen Z, Zhang X, Lu C (2019) In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: synergistic enhancement of mechanical properties and piezoresistivity. Compos A 116:106–113. https://doi.org/10.1016/j.compositesa.2018.10.025

    Article  CAS  Google Scholar 

  131. Zheng Y, Li Y, Dai K, Liu M, Zhou K, Zheng G, Liu C, Shen C (2017) Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos A 101:41–49. https://doi.org/10.1016/j.compositesa.2017.06.003

    Article  CAS  Google Scholar 

  132. Aguilar-Bolados H, Yazdani-Pedram M, Contreras-Cid A, Lopez-Manchado MA, May-Pat A, Aviles F (2017) Influence of the morphology of carbon nanostructures on the piezoresistivity of hybrid natural rubber nanocomposites. Compos B 109:147–154. https://doi.org/10.1016/j.compositesb.2016.10.057

    Article  CAS  Google Scholar 

  133. Haghgoo M, Hassanzadeh-Aghdam MK, Ansari R (2020) A comprehensive evaluation of piezoresistive response and percolation behavior of multiscale polymer-based nanocomposites. Compos A 130:105735. https://doi.org/10.1016/j.compositesa.2019.105735

    Article  CAS  Google Scholar 

  134. Maria Cruz A, Javier P (2020) Self-compacted concrete with self-protection and self-sensing functionality for energy infrastructures. Materials (Basel, Switzerland). https://doi.org/10.3390/ma13051106

    Article  Google Scholar 

  135. Ke K, Sang Z (2020) Manas-Zloczower I (2020) Hybrid systems of three-dimensional carbon nanostructures with low dimensional fillers for piezoresistive sensors. Polym Compos 41(2):468–477. https://doi.org/10.1002/pc.25380

    Article  CAS  Google Scholar 

  136. Chen L, Weng M, Zhou P, Huang F, Liu C, Fan S, Zhang W (2019) Graphene-based actuator with integrated-sensing function. Adv Funct Mater 29(5):1806057. https://doi.org/10.1002/adfm.201806057

    Article  CAS  Google Scholar 

  137. Tan W, Stallard JC, Smail FR, Boies AM, Fleck NA (2019) The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon 150:489–504. https://doi.org/10.1016/j.carbon.2019.04.118

    Article  CAS  Google Scholar 

  138. Li M, Wang J, Wang S, Zuo T, Sun W, Gu Y, Zhang Z (2019) Effect of microstructure on the piezoresistive behavior of carbon nanotube composite film. Mater Res Express 6(2):025034/1–025034/10. https://doi.org/10.1088/2053-1591/aaee3e

    Article  CAS  Google Scholar 

  139. Peng F, Chen K, Yildirim A, Xia X, Vogt BD, Cakmak MM (2019) Tunable piezoresistivity from magnetically aligned Ni(core)@Ag(shell) particles in an elastomer matrix. ACS Appl Mater Interfaces 11(22):20360–20369. https://doi.org/10.1021/acsami.9b04287

    Article  CAS  Google Scholar 

  140. Paul SJ, Sharma I, Elizabeth I, Gahtori B, Titus SS, Chandra P, Gupta BK (2020) A comparative study of compressible and conductive vertically aligned carbon nanotube forest in different polymer matrixes for high-performance piezoresistive force sensors. ACS Appl Mater Interfaces 12(14):16946–16958. https://doi.org/10.1021/acsami.0c01779

    Article  CAS  Google Scholar 

  141. Ding S, Ruan Y, Yu X, Han B, Ni Y (2019) Self-monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors. Constr Build Mater 201:127–137. https://doi.org/10.1016/j.conbuildmat.2018.12.203

    Article  CAS  Google Scholar 

  142. Jeong C, Ko H, Kim H, Sun K, Kwon T, Jeong H, Park Y (2020) Bioinspired, high-sensitivity mechanical sensors realized with hexagonal microcolumnar arrays coated with ultrasonic-sprayed single-walled carbon nanotubes. ACS Appl Mater Interfaces 12(16):18813–18822. https://doi.org/10.1021/acsami.9b23370

    Article  CAS  Google Scholar 

  143. Wu Z, Wei J, Dong R, Chen H (2019) Epoxy composites with reduced graphene oxide-cellulose nanofiber hybrid filler and their application in concrete strain and crack monitoring. Sensors (Basel, Switzerland) 19(18):3963. https://doi.org/10.3390/s19183963

    Article  CAS  Google Scholar 

  144. Shui X, Chung DDL (1996) Piezoresistive carbon filament polymer-matrix composite strain sensor. Smart Mater Struct 5:243–246. https://doi.org/10.1088/0964-1726/5/2/014

    Article  CAS  Google Scholar 

  145. Guo C, Kondo Y, Takai C, Fuji M (2017) Piezoresistivities of vapor-grown carbon fiber/silicone foams for tactile sensor applications. Polym Int 66(3):418–427. https://doi.org/10.1002/pi.5275

    Article  CAS  Google Scholar 

  146. Jambhulkar S, Xu W, Ravichandran D, Prakash J, Mada Kannan AN, Song K (2020) Scalable alignment and selective deposition of nanoparticles for multifunctional sensor applications. Nano Lett 20(5):3199–3206. https://doi.org/10.1021/acs.nanolett.9b05245

    Article  CAS  Google Scholar 

  147. Gong S, Zhu ZH (2014) On the mechanism of piezoresistivity of carbon nanotube polymer composites. Polymer 55(16):4136–4149. https://doi.org/10.1016/j.polymer.2014.06.024

    Article  CAS  Google Scholar 

  148. Toprakci HAK, Kalanadhabhatla SK, Spontak RJ, Ghosh TK (2013) Polymer nanocomposites containing carbon nanofibers as soft printable sensors exhibiting strain-reversible piezoresistivity. Adv Funct Mater 23(44):5536–5542. https://doi.org/10.1002/adfm.201300034

    Article  CAS  Google Scholar 

  149. Shi G, Zhao Z, Pai J, Lee I, Zhang L, Stevenson C, Ishara K, Zhang R, Zhu H, Ma J (2016) Highly sensitive, wearable, durable strain sensors, and stretchable conductors using graphene/silicon rubber composites. Adv Funct Mater 26(42):7614–7625. https://doi.org/10.1002/adfm.201602619

    Article  CAS  Google Scholar 

  150. Mahmood H, Dorigato A, Pegoretti A (2019) Temperature dependent strain/damage monitoring of glass/epoxy composites with graphene as a piezoresistive interphase. Fibers 7(2):17. https://doi.org/10.3390/fib7020017

    Article  CAS  Google Scholar 

  151. Wang L (2016) Pressure sensing material based on piezoresistivity of graphite sheet filled silicone rubber composite. Sens Actuators A 252:89–95. https://doi.org/10.1016/j.sna.2016.11.005

    Article  CAS  Google Scholar 

  152. Zeng Z, Liu M, Xu H, Liu W, Liao Y, Jin H, Zhou L, Zhang Z, Su Z (2016) A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves. Smart Mater Struct 25(6):065005/1–065005/12. https://doi.org/10.1088/0964-1726/25/6/065005

    Article  CAS  Google Scholar 

  153. Wang L, Ding T, Wang P (2008) Effects of compression cycles and precompression pressure on the repeatability of piezoresistivity for carbon black-filled silicone rubber composite. J Polym Sci B 46(11):1050–1061. https://doi.org/10.1002/polb.21438

    Article  CAS  Google Scholar 

  154. Wang P, Ding T (2010) Conductivity and piezoresistivity of conductive carbon black filled polymer composite. J Appl Polym Sci 116(4):2035–2039. https://doi.org/10.1002/app.31693

    Article  CAS  Google Scholar 

  155. Aviles F, Oliva-Aviles AI, Cen-Puc M (2018) Piezoresistivity, strain, and damage self-sensing of polymer composites filled with carbon nanostructures. Adv Eng Mater 20(7):1701159. https://doi.org/10.1002/adem.201701159

    Article  CAS  Google Scholar 

  156. Namilae S, Li J, Chava S (2019) Improved piezoresistivity and damage detection application of hybrid carbon nanotube sheet-graphite platelet nanocomposites. Mech Adv Mater Struct 26(15):1333–1341. https://doi.org/10.1080/15376494.2018.1432812

    Article  CAS  Google Scholar 

  157. Long Y, He P, Xu R, Hayasaka T, Shao Z, Zhong J, Lin L (2020) Molybdenum-carbide-graphene composites for paper-based strain and acoustic pressure sensors. Carbon 157:594–601. https://doi.org/10.1016/j.carbon.2019.10.083

    Article  CAS  Google Scholar 

  158. Li M, Zuo T, Wang S, Gu Y, Gao L, Li Y, Zhang Z (2018) Piezoresistivity of resin-impregnated carbon nanotube film at high temperatures. Nanotechnology 29(36):365702/1–365702/12. https://doi.org/10.1088/1361-6528/aacc58

    Article  CAS  Google Scholar 

  159. Xu S, Hu H, Ji L, Wang P (2019) Piezoresistive properties of multi-walled carbon nanotube/silicone rubber composites under cyclic loads with ac excitation. J. Phys. Conf Ser 1168:22075 pp. https://doi.org/10.1088/1742-6596/1168/2/022075

  160. Wen S, Chung DDL (2007) Double percolation in the electrical conduction in carbon fiber reinforced cement-based materials. Carbon 45(2):263–267. https://doi.org/10.1016/j.carbon.2006.09.031

    Article  CAS  Google Scholar 

  161. Li L, Chung DDL (1993) Effect of viscosity on the electrical properties of conducting thermoplastic composites made by compression molding of a powder mixture. Polym Compos 14(6):467–472. https://doi.org/10.1002/pc.750140604

    Article  CAS  Google Scholar 

  162. Sang Z, Ke K, Manas-Zloczower I (2019) Elastomer composites with a tailored interface network toward tunable piezoresistivity: effect of elastomer particle size. ACS Appl Polym Mater 1(4):714–721. https://doi.org/10.1021/acsapm.8b00241

    Article  CAS  Google Scholar 

  163. Sang Z, Guo H, Ke K, Manas-Zloczower I (2019) Effect of solvent on segregated network morphology in elastomer composites for tunable piezoresistivity. Macromol Mater Eng 304(9):1900278. https://doi.org/10.1002/mame.201900278

    Article  CAS  Google Scholar 

  164. Cai J, Li J, Chen X, Wang M (2020) Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem Eng J (Amsterdam, Netherlands) 393:124805. https://doi.org/10.1016/j.cej.2020.124805

    Article  CAS  Google Scholar 

  165. Feng D, Liu P, Wang Q (2019) Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos A 124:105463. https://doi.org/10.1016/j.compositesa.2019.05.031

    Article  CAS  Google Scholar 

  166. Yao Y, Luo J, Duan X, Liu T, Zhang Y, Liu B, Yu M (2019) On the piezoresistive behavior of carbon fibers: cantilever-based testing method and Maxwell–Garnett effective medium theory modeling. Carbon 141:283–290. https://doi.org/10.1016/j.carbon.2018.09.043

    Article  CAS  Google Scholar 

  167. Penev ES, Artyukhov VI, Yakobson BI (2015) Basic structural units in carbon fibers: atomistic models and tensile behavior. Carbon 85:72–78. https://doi.org/10.1016/j.carbon.2014.12.067

    Article  CAS  Google Scholar 

  168. Louis M, Joshi SP, Brockmann W (2001) An experimental investigation of through-thickness electrical resistivity of CFRP laminates. Compos Sci Technol 61:911–919. https://doi.org/10.1016/S0266-3538(00)00177-9

    Article  CAS  Google Scholar 

  169. Sengupta D, Chen S, Michael A, Kwok CY, Lim S, Pei Y, Kottapalli Prakash AG (2020) Single and bundled carbon nanofibers as ultralightweight and flexible piezoresistive sensors. NPJ Flex Electron 4(1):9. https://doi.org/10.1038/s41528-020-0072-2

    Article  CAS  Google Scholar 

  170. Zhao J, Wang G, Yang R, Lu X, Cheng M, He C, Xie G, Meng J, Shi D, Zhang G (2015) Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano 9(2):1622–1629. https://doi.org/10.1021/nn506341u

    Article  CAS  Google Scholar 

  171. Manzeli S, Allain A, Ghadimi A, Kis A (2015) Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett 15(8):5330–5335. https://doi.org/10.1021/acs.nanolett.5b01689

    Article  CAS  Google Scholar 

  172. Manzeli S, Dumcenco D, Migliato Marega G, Kis A (2019) Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators. Nat Commun 10(1):1–7. https://doi.org/10.1038/s41467-019-12795-1

    Article  CAS  Google Scholar 

  173. Yang S, Zhang C, Chang X, Huang J, Yang Z, Yao J, Wang H, Ding G (2019) Effect of heat treatment atmosphere on the piezoresistivity of indium tin oxide ceramic strain sensor. Ceram Int 45(14):17048–17053. https://doi.org/10.1016/j.ceramint.2019.05.256

    Article  CAS  Google Scholar 

  174. Kwon H, Park Y, Kim C (2019) Strain sensing characteristics using piezoresistivity of semi-conductive silicon carbide fibers. Smart Mater Struct 28(10):105035. https://doi.org/10.1088/1361-665X/ab3b2f

    Article  CAS  Google Scholar 

  175. Nakata S, Uesugi A, Sugano K, Rossi F, Salviati G, Lugstein A, Isono Y (2019) Strain engineering of core-shell silicon carbide nanowires for mechanical and piezoresistive characterizations. Nanotechnology 30(26):265702. https://doi.org/10.1088/1361-6528/ab0d5d

    Article  CAS  Google Scholar 

  176. Xu X, Wang R, Nie P, Cheng Y, Lu X, Shi L, Sun J (2017) Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl Mater Interfaces 9(16):14273–14280. https://doi.org/10.1021/acsami.7b02087

    Article  CAS  Google Scholar 

  177. Wu S, Zou M, Shi X, Yuan Y, Bai W, Ding M, Cao A (2019) Hydrophobic, structure-tunable Cu nanowire@graphene core-shell aerogels for piezoresistive pressure sensing. Adv Mater Technol (Weinheim, Germany) 4(10):1900470. https://doi.org/10.1002/admt.201900470

    Article  CAS  Google Scholar 

  178. Ma Q, Hao B, Ma P (2020) Flexible sensor based on polymer nanocomposites reinforced by carbon nanotube foam derivated from cotton. Compos Sci Technol 192:108103. https://doi.org/10.1016/j.compscitech.2020.108103

    Article  CAS  Google Scholar 

  179. Ran S, Glen TS, Li B, Zheng T, Choi I, Boles ST (2019) Mechanical properties and piezoresistivity of tellurium nanowires. J Phys Chem C 123(36):22578–22585. https://doi.org/10.1021/acs.jpcc.9b05597

    Article  CAS  Google Scholar 

  180. Oliva AI, Ruiz-Tabasco L, Ojeda-Garcia J, Corona JE, Sosa V, Aviles F (2019) Effects of temperature and tensile strain on the electrical resistance of nanometric gold films. Mater Res Express 6(6):66407. https://doi.org/10.1088/2053-1591/ab0c43

    Article  CAS  Google Scholar 

  181. Li Q, Luo S, Wang Q (2019) Piezoresistive thin film pressure sensor based on carbon nanotube-polyimide nanocomposites. Sens Actuators A 295:336–342. https://doi.org/10.1016/j.sna.2019.06.017

    Article  CAS  Google Scholar 

  182. Jiang Y, Shen D, Liu M, Ma Z, Zhao P, Feng L, Zhang D (2019) Fabrication of graphene/polyimide nanocomposite-based hair-like airflow sensor via direct inkjet printing and electrical breakdown. Smart Mater Struct 28(6):65028. https://doi.org/10.1088/1361-665X/ab18cb

    Article  CAS  Google Scholar 

  183. Fu X, Al-Jumaily AM, Ramos M, Meshkinzar A, Huang X (2019) Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique. J Biomater Sci 30(13):1227–1241. https://doi.org/10.1080/09205063.2019.1627649

    Article  CAS  Google Scholar 

  184. Wang L, Nan M, Lei M, Ling Y, Lv D (2019) Space resolution improvement for pressure measurement by using a single conductive polymer composite sheet in area array. Sens Actuators A 295:324–335. https://doi.org/10.1016/j.sna.2019.05.004

    Article  CAS  Google Scholar 

  185. Maurizi M, Slavič J, Cianetti F, Jerman M, Valentinčič J, Lebar A, Boltežar M (2019) Dynamic measurements using FDM 3D-printed embedded strain sensors. Sensors (Basel, Switzerland) 19(12):2661. https://doi.org/10.3390/s19122661

    Article  Google Scholar 

  186. Kim M, Jung J, Jung S, Moon YH, Kim D, Kim JH (2019) Piezoresistive behaviour of additively manufactured multi-walled carbon nanotube/thermoplastic polyurethane nanocomposites. Materials (Basel, Switzerland) 12(16):2613. https://doi.org/10.3390/ma12162613

    Article  CAS  Google Scholar 

  187. Bruot C, Palma JL, Xiang L, Mujica V, Ratner MA, Tao N (2015) Piezoresistivity in single DNA molecules. Nat Commun 6:8032. https://doi.org/10.1038/ncomms9032

    Article  Google Scholar 

  188. Fiorillo AS, Critello CD, Pullano SA (2018) Theory, technology and applications of piezoresistive sensors: a review. Sens Actuators A 281:156–175. https://doi.org/10.1016/j.sna.2018.07.006

    Article  CAS  Google Scholar 

  189. Farcau C, Sangeetha NM, Moreira H, Viallet B, Grisolia J, Ciuculescu-Pradines D, Ressier L (2011) High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS Nano 5(9):7137–7143. https://doi.org/10.1021/nn201833y

    Article  CAS  Google Scholar 

  190. Tanner JL, Mousadakos D, Giannakopoulos K, Skotadis E, Tsoukalas D (2012) High strain sensitivity controlled by the surface density of platinum nanoparticles. Nanotechnology 23(28):285501. https://doi.org/10.1088/0957-4484/23/28/285501

    Article  CAS  Google Scholar 

  191. Chung DDL (2017) Processing-structure-property relationships of continuous carbon fiber polymer–matrix composites. Mater Sci Eng R 113:1–29. https://doi.org/10.1016/j.mser.2017.01.002

    Article  Google Scholar 

  192. Alamusi HN, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723. https://doi.org/10.3390/s111110691

    Article  CAS  Google Scholar 

  193. Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48(3):680–687. https://doi.org/10.1016/j.carbon.2009.10.012

    Article  CAS  Google Scholar 

  194. Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z (2019) Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl Mater Interfaces 11(7):6685–6704. https://doi.org/10.1021/acsami.8b20929

    Article  CAS  Google Scholar 

  195. Yi W, Wang Y, Wang G, Tao X (2012) Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polym Test 31(5):677–684. https://doi.org/10.1016/j.polymertesting.2012.03.006

    Article  CAS  Google Scholar 

  196. Kuwabara M, Matsuda H, Hamamoto K (1999) Giant piezoresistive effects in single grain boundaries of semiconducting barium titanate ceramics. J Electroceram 4(Supplement 1):99–103. https://doi.org/10.1023/A:1009958725603

    Article  CAS  Google Scholar 

  197. Xi X, Chung DDL (2019) Capacitance-based self-sensing of flaws and stress in carbon-carbon composite, with reports of the electric permittivity, piezoelectricity and piezoresistivity. Carbon 146:447–461. https://doi.org/10.1016/j.carbon.2019.01.062(Corrigendum to “Capacitance-based self-sensing of flaws and stress in carbon-carbon composite, with reports of the electric permittivity, piezoelectricity and piezoresistivity”. Carbon 158:545. doi: 10.1016/j.carbon.2019.11.023)

    Article  CAS  Google Scholar 

  198. Meškinis S, Gudaitis R, Šlapikas K, Vasiliauskas A, Čiegis A, Tamulevičius T, Andrulevičius M, Tamulevičius S (2018) Giant negative piezoresistive effect in diamond-like carbon and diamond-like carbon-based nickel nanocomposite films deposited by reactive magnetron sputtering of Ni target. ACS Appl Mater Interfaces 10(18):15778–15785. https://doi.org/10.1021/acsami.7b17439

    Article  CAS  Google Scholar 

  199. Xi X, Chung DDL (2020) Electret behavior of carbon fiber structural composites with carbon and polymer matrices, and its application in self-sensing and self-powering. Carbon 160:361–389. https://doi.org/10.1016/j.carbon.2020.01.035

    Article  CAS  Google Scholar 

  200. Niu M, Yao Y, Shi Y, Luo J, Duan X, Liu T, Guo X (2019) Multifunctional green sensor prepared by direct laser writing of modified wood component. Ind Eng Chem Res 58(24):10364–10372. https://doi.org/10.1021/acs.iecr.9b00850

    Article  CAS  Google Scholar 

  201. Ma B, Wang Y (2018) Fabrication of dense polymer-derived silicon carbonitride ceramic bulks by precursor infiltration and pyrolysis processes without losing piezoresistivity. J Am Ceram Soc 101(7):2752–2759. https://doi.org/10.1111/jace.15442

    Article  CAS  Google Scholar 

  202. Xi X, Chung DDL (2020) Neutron-moderating graphite sensing its own strain by electrical resistance measurement. J Nucl Mater, submitted

  203. Xi X, Chung DDL (2019) Effect of nickel coating on the stress-dependent electric permittivity, piezoelectricity and piezoresistivity of carbon fiber, with relevance to stress self-sensing. Carbon 145:401–410. https://doi.org/10.1016/j.carbon.2019.01.034

    Article  CAS  Google Scholar 

  204. Xi X, Chung DDL (2019) Piezoelectric and piezoresistive behavior of unmodified carbon fiber. Carbon 145:452–461. https://doi.org/10.1016/j.carbon.2019.01.044

    Article  CAS  Google Scholar 

  205. Wang X, Chung DDL (1997) Electromechanical behavior of carbon fiber. Carbon 35(5):706–709

    Article  CAS  Google Scholar 

  206. Cao Y, Yang X, Zhao R, Chen Y, Li N, An L (2016) Giant piezoresistivity in polymer-derived amorphous SiAlCO ceramics. J Mater Sci 51(12):5646–5650. https://doi.org/10.1007/s10853-016-9866-y

    Article  CAS  Google Scholar 

  207. Das Gupta T, Gacoin T, Rowe ACH (2014) Piezoresistive properties of Ag/silica nano-composite thin films close to the percolation threshold. Adv Funct Mater 24:4522–4527. https://doi.org/10.1002/adfm.201303775

    Article  CAS  Google Scholar 

  208. Terauds K, Sanchez-Jimenez PE, Raj R, Vakifahmetoglu C, Colombo P (2010) Giant piezoresistivity of polymer-derived ceramics at high temperatures. J Eur Ceram Soc 30(11):2203–2207. https://doi.org/10.1016/j.jeurceramsoc.2010.02.024

    Article  CAS  Google Scholar 

  209. Fu X, Lu W, Chung DDL (1998) Ozone treatment of carbon fiber for reinforcing cement. Carbon 36(9):1337–1345. https://doi.org/10.1016/S0008-6223(98)00115-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, D.D.L. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. J Mater Sci 55, 15367–15396 (2020). https://doi.org/10.1007/s10853-020-05099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05099-z

Navigation