Skip to main content
Log in

Consequences of Bi3+ introduction for Pr3+ in PrAlO3

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the intent to comprehend the structure and hence the property changes in the PrAlO3 system, the substitution of Bi3+ for Pr3+ has been attempted. The samples were synthesized by solution combustion synthesis and characterized extensively. X-ray diffraction studies revealed that the rhombohedral perovskite structure was preserved up to 20 mol% substitution of bismuth, beyond which diffraction peaks of the secondary phase of α-Bi2O3emerged. The structural refinements indicated the increment of both a and c lattice dimensions with an increase in bismuth content. The samples had porous morphology, and a mean pore diameter of 22.4 nm, along with a surface area of 100 m2/g, was deduced from BET measurements for the 20 mol% bismuth-substituted sample. FTIR, Raman spectroscopic and electron microscopic analysis reinforced the perovskite structure adopted by the bismuth-substituted samples. Both Pr and Bi in Pr0.80Bi0.20AlO3 existed in the + 3 oxidation state as established from the XPS analysis. The inclusion of bismuth introduced intermediate energy levels within the bandgap, as suggested by the redshift of the absorption edge for the bismuth-substituted samples. As the optical bandgap values were in the semiconductor regime, the application of bismuth-replaced samples as a catalyst for the photodegradation of crystal violet dye solution was demonstrated. The amount of dye degraded increased with an increase in the amount of bismuth in the sample. Additionally, Pr0.80Bi0.20AlO3 catalyzed the reduction of nitroaromatics promoted possibly by the Bi3+/Bi(0) redox couple.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Rao CNR, Gopalakrishnan J (1997) New directions in solid state chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Zeng Z, Xu Y, Zhang Z, Gao Z, Luo M, Yin Z, Zhang C, Xu J, Huang B, Luo F, Du Y, Yan C (2020) Rare-earth-containing perovskite nanomaterials: Design, synthesis, properties, and applications. Chem Soc Rev 49:1109–1143

    Article  CAS  Google Scholar 

  3. Grabowska E (2016) Selected perovskite oxides: characterization, preparation, and photocatalytic properties—a review. Appl Catal B 186:97–126

    Article  CAS  Google Scholar 

  4. Miao J, Zhang F (2019) Recent progress on highly sensitive perovskite photodetectors. J Mater Chem C 7:1741–1791

    Article  CAS  Google Scholar 

  5. Kostopoulou A, Brintakis K, NasikasNK SE (2019) Perovskite nanocrystals for energy conversion and storage. Nanophotonics 8:1607–1640

    Article  CAS  Google Scholar 

  6. Panda D, Tseng T-Y (2014) Perovskite oxides as resistive switching memories: a review. Ferroelectrics 471:23–64

    Article  CAS  Google Scholar 

  7. Vasylechko L, Senyshyn A, Bismayer U (2009) Perovskite-type aluminates and gallates. In: Gschneidner KA Jr, Bunzli J-C, Pecharsky V (eds) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam, pp 113–295

    Google Scholar 

  8. Carpenter MA, Howard CJ, Kennedy BJ, Knight KS (2005) Strain mechanism for order-parameter coupling through successive phase transitions in PrAlO3. Phys Rev B 72(024118):1–15

    Google Scholar 

  9. Howard CJ, Kennedy BJ, Chakoumakos BC (2000) Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition. J Phys Condens Matter 12:349–365

    Article  CAS  Google Scholar 

  10. Vasylechko L, Senyshyn A, Trots D, Niewa R, Schnelle W, Knapp M (2007) CeAlO3 and Ce1−xRxAlO3 (R=La, Nd) solid solutions: crystal structure, thermal expansion, and phase transitions. J Solid State Chem 180:1277–1290

    Article  CAS  Google Scholar 

  11. Weber MJ (1973) Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3. J Appl Phys 44:3205–3208

    Article  CAS  Google Scholar 

  12. Moses WW, Derenzo SE, Fyodorov A, Korzhik M, Gektin A, Minkov B, Aslanov V (1995) LuAlO3: Ce-A high density, high-speed scintillator for gamma detection. IEEE Trans Nucl Sci 42:275–279

    Article  CAS  Google Scholar 

  13. Cohen E, Risberg LA, Nordland WA, Burbank RD, Sherwood RC, Van Uitert LG (1969) Structural phase transitions in PrAlO3. Phys Rev 186:476–478

    Article  CAS  Google Scholar 

  14. Riseberg LA, Cohen E, Nordland WA, Van Uitert LG (1969) Magnetic field-induced structural reorientation in PrAlO3. Phys Lett A 30:4–5

    Article  CAS  Google Scholar 

  15. Harley RT, Hayes W, Perry AM, Smith SRP (1973) The phase transitions of PrAlO3. J Phys C Solid State Phys 6:2382–2400

    Article  CAS  Google Scholar 

  16. Kennedy BJ, Vogt T, David Martin C, Parise JB, Hriljac JA (2002) Pressure-induced phase transition in PrAlO3. Chem Mater 14:2644–2648

    Article  CAS  Google Scholar 

  17. Remya GR, Solomon S, Thomas JK, John A (2014) Optical properties of PrAlO3 nano-ceramic. AIP Conf Proc 1576:102–105

    Article  CAS  Google Scholar 

  18. Kennedy BJ, Howard CJ, Prodjosantoso AK, Chakoumakos BC (2002) Neutron powder diffraction study of the rhombohedral to cubic phase transition in the series La1−xPrxAlO3. Appl Phys A 74:S1660–S1663

    Article  CAS  Google Scholar 

  19. Geller S, Raccah PM (1970) Phase transitions in perovskite like compounds of the rare earths. Phys Rev B 2:1167–1172

    Article  Google Scholar 

  20. Lyons KB, Birgeneau RJ, Blount EI, Van Uitert LG (1975) Electronic excitations in PrAlO3. Phys Rev B 11:891–900

    Article  CAS  Google Scholar 

  21. Scott JF (1969) Raman study of trigonal-cubic phase transitions in rare-earth aluminates. Phys Rev 183:823–825

    Article  CAS  Google Scholar 

  22. Filipic C, Bobnar V, Turczynski S, Pawlak DA, Wencka M, Dolinsek J, Levstik A (2010) Influence of the magnetic field on phase transitions in PrAlO3. J Appl Phys 108:116102

    Article  Google Scholar 

  23. Novoselov A, Yoshikawa A, Pejchal J, Nikl M, Fukuda T (2007) Crystal growth and scintillation properties of Ce-doped PrAlO3. Opt Mater 30:168–170

    Article  CAS  Google Scholar 

  24. Novoselov A, Yoshikawa A, Solovieva N, Nikl M (2007) Crystal growth, optical and luminescence properties of (Ce, Sr)-doped PrAlO3 single crystals. Cryst Res Technol 42:1320–1323

    Article  CAS  Google Scholar 

  25. Guzik A, Talik E, Pajaczkowska A, Turczynski S, Kusz J (2014) Magnetic properties of manganese doped PrAlO3 monocrystalline fibers. Mater Sci Poland 32:633–640

    Article  CAS  Google Scholar 

  26. Basyuk T, Vasylechko L, Fadeev S, Berezovets V, Trots D, Niewa R (2010) Phase and structural behavior of the PrAlO3–SmAlO3 system. Acta Phys Pol A 117:98–103

    Article  CAS  Google Scholar 

  27. Basyuk T, Vasylechko L, Syvorotka I, Schmidt U, Trots D, Niewa R (2009) Crystal structures, thermal expansion, and phase transitions of mixed Pr1-xLaxAlO3 perovskites. Phys Status Solidi C 6:1008–1011

    Article  CAS  Google Scholar 

  28. Nordland WA, Van Uitert LG (1970) Anomalies in the dielectric constant of the Pr1-xNdxAlO3 system. J Phys Chem Solids 31:1257–1262

    Article  CAS  Google Scholar 

  29. Sim Y, Kwon D, An S, Ha J-M, Oh T-S, Jung JC (2020) Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Mol. Catal. 489:110925

    Article  CAS  Google Scholar 

  30. Neumann B, Gesing TM, Rednyk A, Matolin V, Gash AE, Baumer M (2014) Sol-gel preparation of alumina stabilized rare earth aero- and xerogels and their use as oxidation catalysts. J Colloid Interface Sci 422:71–78

    Article  CAS  Google Scholar 

  31. Dang P, Liu D, Li G, Al Kheraif AA, Lin J (2020) Recent advances in bismuth ion-doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs. Adv Opt Mater. https://doi.org/10.1002/adom.201901993

    Article  Google Scholar 

  32. Zorenko Y, Gorbenko V, Savchyn V, Zorenko T, Nikl M, Mares JA, Beitlerova A, Jary V (2013) Bi3+–Pr3+ energy transfer processes and luminescent properties of LuAG: Bi, Pr, and YAG: Bi, Pr single crystalline films. J Lumin 141:137–143

    Article  CAS  Google Scholar 

  33. Belik AA, Wuernisha T, Kamiyama T, Mori K, Maie M, Nagai T, Matsui Y, Takayama-Muromachi E (2006) High-Pressure synthesis, crystal structures, and properties of perovskite-like BiAlO3 and pyroxene-like BiGaO3. Chem Mater 18:133–139

    Article  CAS  Google Scholar 

  34. Pandey J, Sethi A, Uma S, Nagarajan R (2018) Catalytic application of oxygen vacancies induced by Bi3+ incorporation in ThO2 samples obtained by solution combustion synthesis. ACS Omega 3:7171–7181

    Article  CAS  Google Scholar 

  35. Wu M-C, Chih J-S, Huang W-K (2014) Bismuth doping effect on TiO2 nanofibers for morphological change and photocatalytic performance. Cryst Engg Commun 16:10692–10699

    Article  CAS  Google Scholar 

  36. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS); Los Alamos national laboratory report LAUR 86–748. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  37. Toby BH (2001) EXPGUI, graphical users interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  38. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, USA

  39. Kruczek M, Talik E, Pawlak DA, Łukasiewicz T (2005) X-ray photoelectron spectroscopy studies of PrAlO3 crystals before and after thermal treatment. Opt Appl 35:347–354

    CAS  Google Scholar 

  40. Lutkehoff S, Neumann M, Slebarski A (1995) 3d and 4d-x-ray-photoelectron spectra of Pr under gradual oxidation. Phys Rev B 52:13808–13811

    Article  CAS  Google Scholar 

  41. Late R, Wagaskar KV, Patil SI, Shelke PB, Sagdeo PR (2020) Effect of bismuth doping on optical properties of polycrystalline PrCrO3. AIP Conf Proc 2220:040017

    Google Scholar 

  42. Turczynski S, Orlinski K, Pawlak DA, Diduszko R, Mucha J, Pekala M, Fagnard JF, Vanderbemden Ph, Carpenter MA (2011) Czochralski crystal growth, thermal conductivity, and magnetic properties of PrxLa1-xAlO3, where x = 1, 0.75, 0.55, 0.40, 0. Cryst Growth Des 11:1091–1097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the DST-SERB Project (EMR/2016/006131), Govt. of India, for the financial support to carry out this work. The use of instrumentation facilities housed in CIF, University of Delhi, and facilities of Prof. S. Uma funded under the SERB Project (EMR/2016/006762), Department of Chemistry, University of Delhi, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamani Nagarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, V., Nagarajan, R. Consequences of Bi3+ introduction for Pr3+ in PrAlO3. J Mater Sci 55, 15415–15425 (2020). https://doi.org/10.1007/s10853-020-05106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05106-3

Navigation