Skip to main content
Log in

Methods, Syntheses and Characterization of Diaryl, Aryl Benzyl, and Dibenzyl Sulfides

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Twenty-four aryl benzyl sulfides, diaryl sulfides and dibenzyl sulfides were synthesized by four methods and characterized by 1H NMR, FT-IR and Gas chromatography. The reaction conditions of different synthesis methods were studied from the aspects of time, solvent, base and dispersant. The molecular structures of benzylphenyl sulfide (2S), (4-tert-butylbenzyl)(4-methylphenyl) sulfide (4S), (4-methylbenzyl)(4-methylphenyl) sulfide (9S), di(4-methylphenyl) sulfide (11S), (3,5-dimethylphenyl)(4-methyl phenyl) sulfide (15S), and dibenzyl sulfide (19S) [22] have been determined by single-crystal X-ray crystallography. Compounds 2S and 15S crystallize in the monoclinic space group P21/c, with a = 12.278(3), b = 15.894(3), c = 5.6056(11) Å, β = 94.532(2)°, and Z = 4 for 2S, and a = 9.800(9), b = 7.950(7), c = 16.690(15) Å, β = 100.890(12)°, and Z = 4 for 15S. The unit cell of 4S has a triclinic Pī symmetry with the cell parameters a = 6.0436(10), b = 8.7871(14), c = 15.535(2) Å, α = 81.921(2)°, β = 81.977(2)°, γ = 80.889(2)°, and Z = 2. Compounds 9S and 11S both crystallize in the orthorhombic space group P212121, with a = 6.188(3), b = 8.041(4), c = 26.005(14) Å, and Z = 4 for 9S, and a = 5.835(2), b = 8.010(3), c = 25.131(9) Å, and Z = 4 for 11S.

Graphic Abstract

Twenty-four aryl sulfide compounds with different substituents were synthesized and characterized, and the molecular structures of six different sulfide compounds have been determined by single-crystal X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choghamarani AG, Seydyosefi Z, Tahmasbi B (2018) Appl Organomet Chem 32:e4396–4404

    Article  Google Scholar 

  2. Ghaderi A (2016) Tetrahedron 72:4758–4782

    Article  CAS  Google Scholar 

  3. Salom-Roig X, Bauder C (2020) Synthesis-Stuttgart 52(7): 964–978

    Article  CAS  Google Scholar 

  4. Wojaczyńska E (2010) J Wojaczyński Chem Rev 110:4303–4356

    Article  Google Scholar 

  5. Rozen S (2014) Acc Chem Res 47:2378–2389

    Article  CAS  Google Scholar 

  6. Percec V, Bae JY, Hill DH (1995) J Org Chem 60(21):6895–6903

    Article  CAS  Google Scholar 

  7. Choghamarani AG, Heidarnezhad Z, Tahmasbi B (2019) ChemistrySelect 4:8860–8869

    Article  Google Scholar 

  8. Velasco N, Virumbrales C, Sanz R (2018) Organic Lett 20(10):2848–2852

    Article  CAS  Google Scholar 

  9. Firouzabadi H, Iranpoor N, Samadi A (2014) Tetrahedron Lett 55:1212–1217

    Article  CAS  Google Scholar 

  10. O’Mahony GE, Ford A, Maguire AR (2012) J Org Chem 77:3288–3296

    Article  Google Scholar 

  11. Migita T, Shimizu T, Asami Y, Shiobara J, Kato Y, Kosugi M (1980) Bull Chem Soc Jpn 53:1385–1389

    Article  CAS  Google Scholar 

  12. She J, Jiang Z, Wang YG (2009) Tetrahedron Lett 50:593–596

    Article  CAS  Google Scholar 

  13. SMART and SAINT+ for Windows NT Version 6.02a. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1998.

  14. Sheldrick GM (1996) Sadabs. University of Göttingen, Göttingen, Germany

    Google Scholar 

  15. G.M. Sheldrick. Shelxtl (version 5.1), Software Reference Manual, Bruker AXS Inc., Madison, Wisconsin, USA, 1997.

  16. Sheldrick GM (2015) Acta Cryst C 71:3–8

    Article  Google Scholar 

  17. Zhang XY, Song HB, Li QS, Liu XF, Tang LF (2007) Polyhedron 26:3743–3749

    Article  CAS  Google Scholar 

  18. Yan YG, Xie MJ, Chen YR, Wu QX, Yu ZL (1999) J. Sichuan Univ. (Nat. Sci. Ed.) 36(3):535–540

    CAS  Google Scholar 

  19. Gogoi P, Hazarika S, Sarma MJ, Barman P (2014) Tetrahedron 70(41):7484–7489

    Article  CAS  Google Scholar 

  20. Ramirez AA, Cross ED, Bierenstiel M (2014) Dalton Trans 43(8):3104–3113

    Article  Google Scholar 

  21. Kumar S, Kandasamy K, Singh HB, Butcher RJ (2004) New J Chem 28:640–645

    Article  CAS  Google Scholar 

  22. Hansson C (2006) Acta Cryst E62:o2377–o2379

    Google Scholar 

  23. Lee E, Ju H, Kim S, Park KM, Lee SS (2015) Cryst. Growth Des 15(11):5427–5436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (21372007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Feng Zhang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WY., Chen, M., Zhang, PZ. et al. Methods, Syntheses and Characterization of Diaryl, Aryl Benzyl, and Dibenzyl Sulfides. J Chem Crystallogr 51, 301–310 (2021). https://doi.org/10.1007/s10870-020-00859-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00859-w

Keywords

Navigation