Skip to main content
Log in

Unimodal value distribution of Laplace eigenfunctions and a monotonicity formula

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let M be a compact, connected Riemannian manifold whose Riemannian volume measure is denoted by \(\sigma \). Let \(f: M \rightarrow {\mathbb {R}}\) be a non-constant eigenfunction of the Laplacian. The random wave conjecture suggests that in certain situations, the value distribution of f under \(\sigma \) is approximately Gaussian. Write \(\mu \) for the measure whose density with respect to \(\sigma \) is \(|\nabla f|^2\). We observe that the value distribution of f under \(\mu \) admits a unimodal density attaining its maximum at the origin. Thus, in a sense, the zero set of an eigenfunction is the largest of all level sets. When M is a manifold with boundary, the same holds for Laplace eigenfunctions satisfying either the Dirichlet or the Neumann boundary conditions. Additionally, we prove a monotonicity formula for level sets of solid spherical harmonics, essentially by viewing nodal sets of harmonic functions as weighted minimal hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 36, 235–249 (1957)

    MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. Grundlehren der Mathematischen Wissenschaften, Vol. 348. Springer, New York (2014)

  3. Bavard, C., Pansu, P.: Sur le volume minimal de \({\mathbb{R}}^2\). Ann. Sci. École Norm. Sup. 19(4), 479–490 (1986)

    Article  MathSciNet  Google Scholar 

  4. Berry, M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A: Math. Gen. 10(12), 2083–2091 (1977)

    Article  MathSciNet  Google Scholar 

  5. Cheng, S.-Y.: Eigenfunctions and Nodal Sets. Comment. Math. Helv. 51, 43–55 (1976)

    Article  MathSciNet  Google Scholar 

  6. Cheeger, J., Naber, A., Valtorta, D.: Critical sets of elliptic equations. Commun. Pure Appl. Math. 68, 173–209 (2015)

    Article  MathSciNet  Google Scholar 

  7. Dong, R.-T.: Nodal sets of eigenfunctions on Riemann surfaces. J. Differ. Geom. 36(2), 493–506 (1992)

    Article  MathSciNet  Google Scholar 

  8. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    Article  MathSciNet  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  11. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Universitext, Springer-Verlag, Berlin (2004)

    Book  Google Scholar 

  12. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, Vol. 47. American Mathematical Society, Providence (2009)

  13. Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. (GAFA) 13(1), 178–215 (2003)

    Article  MathSciNet  Google Scholar 

  14. Hardt, R., Simon, L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30(2), 505–522 (1989)

    Article  MathSciNet  Google Scholar 

  15. Jakobson, D., Nadirashvili, N., Toth, J.: Geometric properties of eigenfunctions. Russ. Math. Surv. 56(6), 1085–1105 (2001)

    Article  MathSciNet  Google Scholar 

  16. Lelong, P.: Propriétés métriques des variétés analytiques complexes définies par une équation. Ann. Sci. École Norm. Sup. (3) 67, 393–419 (1950)

    Article  MathSciNet  Google Scholar 

  17. Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. Math. 187(1), 241–262 (2018)

    Article  MathSciNet  Google Scholar 

  18. Milman, E.: On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177(1), 1–43 (2009)

    Article  MathSciNet  Google Scholar 

  19. Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52(8), 853–858 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Rutishauser, H.: Über Folgen und Scharen von analytischen und meromorphen Funktionen mehrerer Variabeln, sowie von analytischen Abbildungen. Acta Math. 83, 249–325 (1950)

    Article  MathSciNet  Google Scholar 

  21. Simon, L.: Lectures on Geometric Measure Theory. Centre for Mathematical Analysis, Australian National University, Canberra (1983)

    MATH  Google Scholar 

  22. Sogge, C., Zelditch, S.: Lower bounds on the Hausdorff measure of nodal sets. Math. Res. Lett. 18(1), 25–37 (2011)

    Article  MathSciNet  Google Scholar 

  23. Zelditch, S.: Eigenfunctions of the Laplacian on a Riemannian Manifold. CBMS Regional Conference Series in Mathematics, Vol. 125. American Mathematical Society (2017)

Download references

Acknowledgements

I would like to thank Emanuel Milman for proposing an idea that has led to simplification of the proof of Theorem 1.3 and Corollary 1.4. I am grateful to Sasha Logunov for vivid explanations on harmonic analysis, and to David Jerison, Misha Sodin and Steve Zelditch for their interest and for their remarks on an earlier version of this text. Supported in part by the Israeli Science Foundation (ISF) (Grant Number 765/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo’az Klartag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klartag, B. Unimodal value distribution of Laplace eigenfunctions and a monotonicity formula. Geom Dedicata 208, 13–29 (2020). https://doi.org/10.1007/s10711-019-00507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00507-4

Keywords

Mathematics Subject Classification

Navigation