Skip to main content
Log in

Climatology of Tibetan Plateau vortices derived from multiple reanalysis datasets

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Tibetan Plateau vortex (TPV) is a mesoscale weather system active in the near-surface layer, which is one of the major systems for the generation of precipitation in the Tibetan Plateau (TP). However, no long-term observations of the TPVs are available due to the scarcity of observations in the TP. Thereby, long-term, high-accuracy reanalysis products are a reliable source for the analysis of characteristic TPV activities and possible mechanisms behind. In the present study, an objective analysis method is implemented to obtain a complete dataset of TPV based on several reanalysis products, including the ERA-Interim, ERA40, JRA55, NCEP CFSR, and NASA MERRA2. The TPVs are detected and tracked by the minima in geopotential height at 500 hPa. Results indicate that the TPVs derived from multiple reanalysis products have quite similar spatial patterns and temporal variability. The characteristic parameters of the TPVs derived from a given reanalysis data are related to the resolution of this reanalysis product. Higher-resolution reanalysis products can yield more low-pressure systems, which explains why the TPVs derived from high-resolution reanalysis datasets generally have longer lifetime, stronger and larger vortex scale than those from low-resolution reanalysis products, although the total number of TPVs are similar. The annual average number of TPVs generated in the TP is 63.5, and these TPVs largely originate in the mountainous area of the central western TP around (34° N, 78–95° E) and a belt zone (30° N, 80–84° E) in the southern TP, where the elevation is around 5500 m. The TPVs often dissipate in low valleys and the lee side of mountains. They mainly occur in the warm season during May–September, most active in the summer and least active in the winter. More TPVs form in the daytime than in the nighttime. Those TPVs that move out of the TP account for less than 10–14% of all TPVs, and they usually follow three moving paths: eastward (6.9–7.8%), northeastward (2.3–3.4%) and southward (2.3–3.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

This research is sponsored by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA2006010104), the National Natural Science Foundation of China (Grants No.41775075, No.91637105), and the National Special Project for Commonweal Industry in China (Grant No.GYHY201406001). We thank the information provided by Science Data Bank (https://www.sciencedb.cn). The Grid Analysis and Display System Software (GrADS) is used to analyze and display data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Guo, W., Jia, L. et al. Climatology of Tibetan Plateau vortices derived from multiple reanalysis datasets. Clim Dyn 55, 2237–2252 (2020). https://doi.org/10.1007/s00382-020-05380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05380-6

Keywords

Navigation