Skip to main content
Log in

Impact of the Small-Scale Spatial Distribution of Dust Particles on the Chemical Evolution of the Diffuse Interstellar Medium

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In this work we analyze the effect of gas-dust clumps, possibly formed in the interstellar medium due to instability, described in [10], on the chemical evolution of the diffuse interstellar medium. For this purpose we calculate chemical evolution with common parameters of diffuse interstellar medium (ISM). It is shown that abundances of most observed molecules are higher in a model of the diffuse medium with clumps than in a model with homogeneous dust distribution. In some cases it leads to better agreement of modelling abundances and their relations with observational data. But at the same time, it does not mean that the hypothesis about inhomogenous dust distribution can qualitatively improve the agreement between modelling and observational data on the chemical composition of the diffuse interstellar medium. The best-fit range of values of the physical characteristics of the medium is wider under the assumption that dust can form compact gas-dust clumps and is not uniformly mixed with gas. Results described in this work show that small-scale (\( \leqslant {\kern 1pt} 1\) au) inhomogeneities of the interstellar medium can be important for its chemical evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. H. Wooden, S. B. Charnley, and P. Ehrenfreund, in Composition and Evolution of Interstellar Louds, Ed. by M. C. Festou, H. U. Keller, and H. A. Weaver (Univ. of Arizona Press, Tucson, 2004), p. 33.

    Google Scholar 

  2. A. G. G. M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge Univ. Press, New York, 2005).

    Book  Google Scholar 

  3. T. P. Snow and B. J. McCall, Ann. Rev. Astron. Astrophys. 44, 367 (2006).

    Article  ADS  Google Scholar 

  4. R. Lucas and H. S. Liszt, Astron. Astrophys. 358, 1069 (2000).

    ADS  Google Scholar 

  5. H. Liszt and R. Lucas, Astron. Astrophys. 370, 576 (2001).

    Article  ADS  Google Scholar 

  6. R. Lucas and H. S. Liszt, Astron. Astrophys. 384, 1054 (2002).

    Article  ADS  Google Scholar 

  7. D. A. Neufeld, B. Godard, M. Gerin, G. Pineau des Forets, et al., Astron. Astrophys. 577, A49 (2015).

    Article  Google Scholar 

  8. M. Gerin, M. de Luca, J. Black, J. R. Goicoechea, et al., Astron. Astrophys. 518, L110 (2010).

    Article  ADS  Google Scholar 

  9. B. Godard, E. Falgarone, M. Gerin, and D. C. Lis, Astron. Astrophys. 540, A87 (2012).

    Article  Google Scholar 

  10. V. N. Tsytovich, A. V. Ivlev, A. Burkert, and G. E. Morfill, Astrophys J. 780, 131 (2014).

    Article  ADS  Google Scholar 

  11. A. B. Ostrovskii et al., Mon. Not. R. Astron. Soc. 495 (4), 4314 (2020). https://doi.org/10.1093/mnras/staa1460

  12. A. V. Ivlev, A. Burkert, A. Vasyunin, and P. Caselli, Astrophys J. 861, 30 (2018); arXiv:1805.1179.

    Article  ADS  Google Scholar 

  13. G. Morfill, Plasma Phys. Rep. 26, 682 (2000). https://doi.org/10.1134/1.1306997

    Article  ADS  Google Scholar 

  14. R. Bingham and V. N. Tsytovich, Astron. Astrophys. 376, L43 (2001).

    Article  ADS  Google Scholar 

  15. V. N. Tsytovich and K. Watanabe, Contrib. Plasma Phys. 43 (2), 51 (2003). https://doi.org/10.1002/ctpp.200310006

    Article  ADS  Google Scholar 

  16. S. A. Khrapak, A. V. Ivlev, and G. Morfill, Phys. Rev. E 64, 046403 (2001).

    Article  ADS  Google Scholar 

  17. A. I. Vasyunin and E. Herbst, Astrophys J. 769, 34 (2013).

    Article  ADS  Google Scholar 

  18. R. T. Garrod and E. Herbst, Astron. Astrophys. 457, 927 (2006); astro-ph/0607560.

    Article  ADS  Google Scholar 

  19. V. A. Sokolova, A. B. Ostrovskii, and A. I. Vasyunin, Astron. Rep. 61, 678 (2017).

    Article  ADS  Google Scholar 

  20. M. Asplund, N. Grevesse, and A. J. Sauval, Nucl. Phys. A 777, 1 (2006). http://www.sciencedirect.com/science/article/pii/ S0375947405009541

    Article  ADS  Google Scholar 

  21. S. Yamamoto, Introduction to Astrochemistry. Chemical Evolution from Interstellar Clouds to Star and Planet Formation (Springer, Tokyo, Japan, 2017).

    Google Scholar 

  22. N. Indriolo and B. J. McCall, Astrophys J. 745, 91 (2012).

    Article  ADS  Google Scholar 

  23. A. I. Vasyunin, A. M. Sobolev, D. S. Wiebe, and D. A. Semenov, Astron. Lett. 30, 566 (2004); astro-ph/0311450.

    Article  ADS  Google Scholar 

  24. J. C. Laas and P. Caselli, Astron. Astrophys. 624, A108 (2019). https://doi.org/10.1051/0004-6361/201834446

    Article  ADS  Google Scholar 

  25. J. Chantzos, V. M. Rivilla, A. Vasyunin, E. Redaelli, L. Bizzocchi, F. Fontani, and P. Caselli, Astron. Astrophys. 633, A54 (2020); arXiv: 1910.13449.

  26. V. Thiel, A. Belloche, K. M. Menten, R. T. Garrod, and H. S. P. Muller, Astron. Astrophys. 605, L6 (2017). https://doi.org/10.1051/0004-6361/201731495

    Article  ADS  Google Scholar 

  27. H. Liszt and R. Lucas, Astron. Astrophys. 391, 693 (2002).

    Article  ADS  Google Scholar 

  28. H. S. Liszt, R. Lucas, and J. Pety, Astron. Astrophys. 448, 253 (2006).

    Article  ADS  Google Scholar 

  29. P. Crane, D. Lambert, and Y. Sheffer, Astrophys. J. Suppl. 99, 107 (1995).

    Article  ADS  Google Scholar 

  30. M. Gerin, M. Luca, J. Goicoechea, E. Herbst, et al., Astron. Astrophys. 521, L16 (2010).

    Article  ADS  Google Scholar 

  31. K. M. Menten, F. Wyrowski, A. Belloche, R. Güsten, L. Dedes, and H. S. P. Müller, Astron. Astrophys. 525, A77 (2011).

    Article  ADS  Google Scholar 

  32. D. A. Neufeld, E. Falgarone, M. Gerin, and B. Godard, Astron. Astrophys. 542, L6 (2012).

    Article  ADS  Google Scholar 

  33. J. F. Corby, B. A. McGuire, E. Herbst, and A. J. Remijan, Astron. Astrophys. 610, A10 (2018). https://doi.org/10.1051/0004-6361/201730988

    Article  ADS  Google Scholar 

  34. M. Gerin, D. A. Neufeld, and J. R. Goicoechea, Ann. Rev. Astron. Astrophys. 54, 181 (2016).

    Article  ADS  Google Scholar 

  35. H. Liszt, M. Gerin, A. Beasley, and J. Pety, Astrophys. J. 856, 151 (2018). https://doi.org/10.3847%2F1538-4357%2Faab208

    Article  ADS  Google Scholar 

  36. M. Gerin, H. Liszt, D. Neufeld, B. Godard, P. Sonnentrucker, J. Pety, and E. Roueff, Astron. Astrophys. 622, A26 (2019). https://doi.org/10.1051/0004-6361/201833661

    Article  ADS  Google Scholar 

  37. T. Oka, J. Dahlstrom, B. McCall, S. Friedman, L. Hobbs, P. Sonnentrucker, D. Welty, and D. York, Astrophys. J. 582, 823 (2008).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.V. Ivlev for valuable discussions during the course of this work. The reported study was funded by RFBR according to the research project 18-32-00645. Work of S. Parfenov was made with the financial sup-port of Ministry of Science and Higher Education of the Russian Federation, project FEUZ-2020-0030. V. Sokolova and A. Vasyunin are members of the Max Planck Partner Group at the Ural Federal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Sokolova, A. I. Vasyunin, A. B. Ostrovskii or S. Yu. Parfenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, V.A., Vasyunin, A.I., Ostrovskii, A.B. et al. Impact of the Small-Scale Spatial Distribution of Dust Particles on the Chemical Evolution of the Diffuse Interstellar Medium. Astron. Rep. 64, 693–710 (2020). https://doi.org/10.1134/S1063772920090061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920090061

Navigation