Skip to main content

Advertisement

Log in

Forest cover influences zooplanktonic communities in Amazonian streams

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Deforestation of riparian areas is a major driver of biodiversity loss in aquatic ecosystems. Thus, we investigated the influence of forest cover and physical and chemical characteristics of streams on zooplankton communities in the southeastern Amazon. We addressed the following questions: (1) Are environmental factors (water physical and chemical characteristics and landscape variables) and dispersive processes (reflected in the spatial structure among sampling sites) efficient predictors of zooplankton communities in different hydrologic seasons? (2) Can zooplankton species be indicators of watersheds’ forest-cover levels? We sampled 15 streams located in nine rural settlements in northern Mato Grosso, Brazil, in the dry (August) and rainy (March) seasons of 2017. The forest-cover level had a significant effect on the physical and chemical characteristics (conductivity, dissolved oxygen, and temperature) of streams and also on the structure and composition of zooplankton communities, mainly of rotifers and testate amoebae. Areas with low vegetation cover had seasonal changes in species richness, individuals density, and zooplankton community structure. Environmental and spatial variables had no significant effect on the structure of zooplankton communities, which may indicate the strong influence of stochastic factors. Species from three zooplankton groups (rotifers, microcrustaceans, and testate amoebae) were indicators of forest-cover classes. This study provided valuable contributions to the conservation of riparian ecosystems and the use of biological indicators in environmental monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alaoui A, Rogger M, Peth S, Blöschl G (2018) Does soil compaction increase floods? A review. J Hydrol 557:631–642

    Google Scholar 

  • Alencar A, Pereira C, Castro I et al (2015) Desmatamento nos Assentamentos da Amazônia: histórico, tendências e oportunidades. IPAM, Brasília, DF

    Google Scholar 

  • ANA (2006) Topologia hídrica: método de construção e modelagem da base hidrográfica para suporte à gestão de recursos hídricos: versão 1.11

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

    Google Scholar 

  • Arimoro FO, Oganah AO (2010) Zooplankton community responses in a perturbed tropical stream in the Niger Delta, Nigeria. Open Environ Biol Monit J 3(1):1–11. http://dx.doi.org/%2010.2174/1875040001003010001

    CAS  Google Scholar 

  • Astorga A, Oksanen J, Luoto M et al (2012) Distance decay of similarity in freshwater communities: do macro-and microorganisms follow the same rules? Glob Ecol Biogeogr 21:365–375

    Google Scholar 

  • Attayde JL, Bozelli RL (1998) Assessing the indicator properties of zooplankton assemblages to disturbance gradients by canonical correspondence analysis. Can J Fish Aquat Sci 55:1789–1797

    Google Scholar 

  • Bailly D, Cassemiro FAS, Winemiller KO et al (2016) Diversity gradients of Neotropical freshwater fish: evidence of multiple underlying factors in human-modified systems. J Biogeogr 43:1679–1689

    Google Scholar 

  • Bambi P, de Souza RR, Feio MJ et al (2017) Temporal and spatial patterns in inputs and stock of organic matter in savannah streams of Central Brazil. Ecosystems 20:757–768

    Google Scholar 

  • Betts MG, Wolf C, Ripple WJ et al (2017) Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547:441

    CAS  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Google Scholar 

  • Bleich ME, Mortati AF, André T, Piedade MTF (2014) Riparian deforestation affects the structural dynamics of headwater streams in Southern Brazilian Amazonia. Trop Conserv Sci 7:657–676

    Google Scholar 

  • Bleich ME, Piedade MTF, Mortati AF, André T (2015) Autochthonous primary production in southern Amazon headwater streams: novel indicators of altered environmental integrity. Ecol Indic 53:154–161

    Google Scholar 

  • Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523. https://doi.org/10.1146/annurev.ento.51.110104.151124

    Article  CAS  Google Scholar 

  • Bonecker CC, Bonecker SLC, Bozelli RL et al (1996) Zooplankton composition under the influence of liquid wastes from a pulp mill in middle Doce River(Belo Oriente, MG, Brazil). Arq Biol e Tecnol 39:893–901

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2018) Numerical ecology with R. Springer, Berlin

    Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, et al (1976) A review of some problems in zooplankton production studies. Norw J 419–456

  • Bozelli RL, Caliman A, Guariento RD et al (2009) Interactive effects of environmental variability and human impacts on the long-term dynamics of an Amazonian floodplain lake and a South Atlantic coastal lagoon. Limnologica 39:306–313

    Google Scholar 

  • Brasil LS, Luiza-Andrade A, Kisaka TB et al (2019) Cladocera distribution along an environmental gradient on the Cerrado-Amazon ecotone: a preliminary study. Acta Limnol Bras. https://doi.org/10.1590/s2179-975x2919

    Article  Google Scholar 

  • Brejão GL, Hoeinghaus DJ, Pérez-Mayorga MA et al (2018) Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conserv Biol 32:860–871

    Google Scholar 

  • Brito JG, Roque FO, Martins RT et al (2020) Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biol Conserv 241:108263

    Google Scholar 

  • Buendia C, Gibbins CN, Vericat D et al (2013) Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecol Indic 25:184–196

    Google Scholar 

  • Callisto M, Moreno P, Barbosa FAR (2001) Habitat diversity and benthic functional trophic groups at Serra do Cipó, Southeast Brazil. Rev Bras Biol 61:259–266

    CAS  Google Scholar 

  • Câmara dos Reis M, Lacativa Bagatini I, de Oliveira VL et al (2019) Spatial heterogeneity and hydrological fluctuations drive bacterioplankton community composition in an Amazon floodplain system. PLoS ONE 14:e0220695

    Google Scholar 

  • Cardoso SJ, Nabout JC, Farjalla VF et al (2017) Environmental factors driving phytoplankton taxonomic and functional diversity in Amazonian floodplain lakes. Hydrobiologia 802:115–130

    CAS  Google Scholar 

  • Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61. https://doi.org/10.1023/A:1016136723584

    Article  Google Scholar 

  • Caroni R, Irvine K (2010) The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? In: Biology and environment: proceedings of the Royal Irish Academy. JSTOR, pp 35–53

  • Castello L, Macedo MN (2016) Large-scale degradation of Amazonian freshwater ecosystems. Glob Chang Biol 22:990–1007

    Google Scholar 

  • Chará-Serna AM, Epele LB, Morrissey CA, Richardson JS (2019) Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Sci Total Environ 692:1291–1303

    Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci 104:17430–17434

    CAS  Google Scholar 

  • Conrad O, Bechtel B, Bock M et al (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991

    Google Scholar 

  • da Bispo PC, Oliveira LG, Crisci VL, Silva MM (2001) A pluviosidade como fator de alteração da entomofauna bentônica (Ephemeroptera, Plecoptera e Trichoptera) em córregos do Planalto Central do Brasil. Acta Limnol Bras 13:1–9

    Google Scholar 

  • da Silva WM (2003) Diversidade dos Cyclopoida (Copepoda, Crustácea) de água doce do estado de São Paulo: taxonomia, ecologia e genética

  • De Bie T, De Meester L, Brendonck L et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747

    Google Scholar 

  • Dray S, Blanchet G, Borcard D et al (2017) Adespatial: multivariate multiscale spatial analysis. R package version 0.0-9

  • Du X, García-Berthou E, Wang Q et al (2015) Analyzing the importance of top-down and bottom-up controls in food webs of Chinese lakes through structural equation modeling. Aquat Ecol 49:199–210

    CAS  Google Scholar 

  • Elmoor-Loureiro LMA (1997) Manual de identificação de cladóceros límnicos do Brasil

  • El-Sheimy N, Valeo C, Habib A (2005) Digital terrain modeling: acquisition, manipulation and applications (Artech House Remote Sensing Library). Artech House, Norwood, MA

    Google Scholar 

  • Fares ALB, Calvão LB, Torres NR et al (2020) Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecol Indic 113:106231

    Google Scholar 

  • Farr TG, Kobrick M (2000) Shuttle Radar Topography Mission produces a wealth of data. Eos, Trans Am Geophys Union 81:583–585

    Google Scholar 

  • Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45:2. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Fournier B, Coffey EED, van der Knaap WO et al (2016) A legacy of human-induced ecosystem changes: spatial processes drive the taxonomic and functional diversities of testate amoebae in Sphagnum peatlands of the Galápagos. J Biogeogr 43:533–543

    Google Scholar 

  • França JS, Gregório RS, de Paula JD et al (2009) Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Mar Freshw Res 60:990–998

    Google Scholar 

  • Fulone LJ, Vieira LCG, Velho LFM, Lima AF (2008) Influence of depth and rainfall on testate amoebae (Protozoa-Rhizopoda) composition from two streams in northwestern São Paulo state. Acta Limnol Bras 20:29–34

    Google Scholar 

  • García-Chicote J, Armengol X, Rojo C (2018) Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69:46–54. https://doi.org/10.1016/j.limno.2017.11.004

    Article  CAS  Google Scholar 

  • Gomes LF, Vieira LCG, de Souza CA et al (2020) Environmental controls on zooplankton during hydrological periods of flooding and flushing in an Amazonian floodplain lake. Limnetica 39:35–48

    Google Scholar 

  • Gonçalves JF Jr, França JS, Medeiros AO et al (2006) Leaf breakdown in a tropical stream. Int Rev Hydrobiol 91:164–177

    Google Scholar 

  • Guenther G (2001) Digital elevation model technologies and applications, the DEM users manual: chapter 8 airborne lidar bathymetry. Am Soc Photogramm Remote Sensing Bethesda, MA, USA

    Google Scholar 

  • Hauer C, Leitner P, Unfer G et al (2018) The role of sediment and sediment dynamics in the aquatic environment. Riverine Ecosystem Management. Springer, Cham, pp 151–169

    Google Scholar 

  • Henley WF, Patterson MA, Neves RJ, Lemly AD (2000) Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Rev Fish Sci 8:125–139

    Google Scholar 

  • Heugens EHW, Hendriks AJ, Dekker T et al (2001) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284

    CAS  Google Scholar 

  • Jézéquel C, Tedesco PA, Bigorne R et al (2020) A database of freshwater fish species of the Amazon Basin. Sci Data 7:1–9

    Google Scholar 

  • Joko CY (2011) Taxonomia de rotíferos monogonontas da planície de inundação do alto rio Paraná (MS/PR)

  • Koste W (1978) Rotatoria die rädertiere Mitteleuropas begründet von Max Voigt–Monogononta. 2. Auflage neubearbeitet von Walter Koste Gebrüder Borntraeger Berlin, Stuttgart

  • Kozlowski DF, Hall RK, Swanson SR, Heggem DT (2016) Linking management and riparian physical functions to water quality and aquatic habitat. J Water Resour Prot 8:797

    Google Scholar 

  • Kuczyńska-Kippen N, Basińska A (2014) Habitat as the most important influencing factor for the rotifer community structure at landscape level. Int Rev Hydrobiol 99:58–64

    Google Scholar 

  • Lampert W, Sommer U (2007) Limnoecology: the ecology of lakes and streams. Oxford University Press, Oxford

    Google Scholar 

  • Lathuillière MJ, Coe MT, Johnson MS (2016) A review of green-and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia? Hydrol Earth Syst Sci 20:2179–2194

    Google Scholar 

  • Leão H, Siqueira T, Torres NR, de Assis Montag LF (2020) Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecol Indic 111:106039

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Marcuzzo FFN, Andrade LR, Melo DC de R (2011) Métodos de interpolação matemática no mapeamento de chuvas do estado do Mato Grosso

  • Medeiros ÍLS, Santos FA dos, El-Deir ACA, Melo Júnior M de (2019) Does riparian vegetation influence the composition and structure of the zooplankton community in temporary ponds? Iheringia Série Zool 109. https://doi.org/10.1590/1678-4766e2019037

  • Mitchell EAD, Payne RJ, Lamentowicz M (2008) Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands. J Paleolimnol 40:603–618

    Google Scholar 

  • Mullan K, Sills E, Pattanayak SK, Caviglia-Harris J (2018) Converting forests to farms: the economic benefits of clearing forests in agricultural settlements in the Amazon. Environ Resour Econ 71:427–455. https://doi.org/10.1007/s10640-017-0164-1

    Article  Google Scholar 

  • Neves GP (2011) Copépodes planctônicos (Crustacea, Calanoida e Cyclopoida) em reservatórios e trechos lóticos da bacia do Rio da Prata (Brasil, Paraguai, Argentina e Uruguai): taxonomia, distribuição geográfica e alguns atributos ecológicos

  • Nimer E, Brandão AMPM (1989) Balanço hídrico e clima da região dos cerrados. Secretaria de Planejamento e Coordenação da Presidência da República, Fundação Instituto Brasileiro de Geografia e Estatística, Diretoria de Geociências, Departamento de Recursos Naturais e Estudos Ambientais

  • Nobre RLG, Caliman A, Cabral CR et al (2020) Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. Sci Total Environ 716:137044

    CAS  Google Scholar 

  • Nóbrega RLB, Guzha AC, Lamparter G et al (2018) Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes. Sci Total Environ 635:259–274

    Google Scholar 

  • Ogden CG (1991) The biology and ultrastructure of an agglutinate testate amoeba Difflugia geosphaira sp. nov. (Protozoa, Rhizopoda). Arch für Protistenkd 140:141–150

    Google Scholar 

  • Ogden GG, Hedley RH (1980) An atlas of freshwater testate amoebae. Soil Sci 130:176

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, et al (2013) Package ‘vegan.’ Community Ecol Packag version 2

  • Pfafstetter O (1989) Classificação de bacias hidrográficas: metodologia de codificação. Rio Janeiro, RJ Dep Nac Obras Saneam 1989:19

    Google Scholar 

  • Prudente BS, Pompeu PS, Juen L, Montag LFA (2017) Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshw Biol 62:303–316

    Google Scholar 

  • Reyer CPO, Rammig A, Brouwers N, Langerwisch F (2015) Forest resilience, tipping points and global change processes. J Ecol 103:1–4

    Google Scholar 

  • Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing hydrologic alteration within ecosystems. Conserv Biol 10:1163–1174

    Google Scholar 

  • Ríos-Touma B, Ramírez A (2019) Multiple stressors in the neotropical region: environmental impacts in biodiversity hotspots. In: Multiple stressors in river ecosystems. Elsevier, pp 205–220

  • Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472

    Google Scholar 

  • Roriz PAC, Yanai AM, Fearnside PM (2017) Deforestation and Carbon Loss in Southwest Amazonia: Impact of Brazil’s Revised Forest Code. Environ Manage 60:367–382

    Google Scholar 

  • Schuler MS, Chase JM, Knight TM (2017) Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community. Ecology 98:1651–1659

    Google Scholar 

  • Schwind LTF, Arrieira RL, Bonecker CC, Lansac-Tôha FA (2016) Chlorophyll-a and suspended inorganic material affecting the shell traits of testate amoebae community. Acta Protozool 2016:145–154

    Google Scholar 

  • Statzner B, Gore JA, Resh VH (1988) Hydraulic stream ecology: observed patterns and potential applications. J North Am Benthol Soc 7:307–360

    Google Scholar 

  • Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855. https://doi.org/10.1126/science.1259855

  • Štěpánek M, Jiří J (1958) Difflugia gramen Penard, Difflugia gramen var. achlora Penard and Difflugia gramen f. globulosa fn. Hydrobiologia 10:138–156

    Google Scholar 

  • Stoch F, Artheau M, Brancelj A et al (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw Biol 54:745–755

    Google Scholar 

  • Strecker AL, Brittain JT (2017) Increased habitat connectivity homogenizes freshwater communities: historical and landscape perspectives. J Appl Ecol 54:1343–1352

    Google Scholar 

  • Sweeney BW, Bott TL, Jackson JK et al (2004) Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci 101:14132–14137

    CAS  Google Scholar 

  • Team RC (2018) R: A language and environment for statistical computing

  • Thomas SM, Neill C, Deegan LA et al (2004) Influences of land use and stream size on particulate and dissolved materials in a small Amazonian stream network. Biogeochemistry 68:135–151. https://doi.org/10.1023/B:BIOG.0000025734.66083.b7

    Article  CAS  Google Scholar 

  • Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science (80-) 349:814–818

    CAS  Google Scholar 

  • Velho LFM, Lansac-Tôha FA, Bini LM (2003) Influence of environmental heterogeneity on the structure of testate amoebae (Protozoa, Rhizopoda) assemblages in the plankton of the upper Paraná river floodplain, Brazil. Int Rev Hydrobiol A J Cover all Asp Limnol Mar Biol 88:154–166

    Google Scholar 

  • Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manag 21:203–217

    CAS  Google Scholar 

  • Xiong W, Ni P, Chen Y et al (2019) Biological consequences of environmental pollution in running water ecosystems: a case study in zooplankton. Environ Pollut 252:1483–1490

    CAS  Google Scholar 

  • Zhai M, Hřívová D, Peterka T (2015) The harpacticoid assemblages (Copepoda: Harpacticoida) in the Western Carpathian spring fens in relation to environmental variables and habitat age. Limnol Manag Inl Waters 53:84–94

    CAS  Google Scholar 

  • Zhang M, Liu N, Harper R et al (2017) A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J Hydrol 546:44–59

    Google Scholar 

  • Zimbres B, Machado RB, Peres CA (2018a) Anthropogenic drivers of headwater and riparian forest loss and degradation in a highly fragmented southern Amazonian landscape. Land use policy 72:354–363

    Google Scholar 

  • Zimbres B, Peres CA, Penido G, Machado RB (2018b) Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier. Biodivers Conserv 27:2815–2836

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Caroline Alcântara Missias Gomes.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A.C.A.M., Gomes, L.F., Roitman, I. et al. Forest cover influences zooplanktonic communities in Amazonian streams. Aquat Ecol 54, 1067–1078 (2020). https://doi.org/10.1007/s10452-020-09794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-020-09794-6

Keywords

Navigation