Skip to main content
Log in

Modulation of electron transfer in Si/SiO2/HfO2/Graphene by the HfO2 thickness

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied by Raman spectroscopy the effect of the variation of the thickness of the HfO2 layer in Si/SiO2/HfO2/Graphene heterostructures on the density of carrier transferred to graphene. Three thicknesses of the HfO2 layer equal to 30, 20, and 5 nm were used. Analysis of the behavior of peaks G and 2D as well as the Raman intensity ratios ID/IG and I2D/IG shows that the density of carriers transferred to graphene increases when the thickness of the HfO2 layer decreases from 30 to 5 nm. Analysis of the photoluminescence (PL) spectra of Si/SiO2/HfO2 structures reveals the presence of bands associated with defects. These are essentially associated with oxygen vacancies in HfO2 and are responsible for the transfer of carriers to the graphene layer. The measured refractive index of HfO2 by ellipsometry shows an increase in the density of the defects in HfO2 with a decrease in its thickness in agreement with Raman results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Medjdoub, M. Zegaoui, N. Waldhoff, B. Grimbert, N. Rolland, P.A. Rolland, Above 600mS/mm transconductance with 2.3 A/mm drain current density AlN/GaN high-electron-mobility transistors grown on silicon. Appl. Phys. Express. 4(064106), 1–3 (2011)

    Google Scholar 

  2. U. Bianka, G. Tibor, Transformation: nanotechnology—challenges in transistor design and future technologies. Elektrotechn Informationstechn 134, 349–354 (2017)

    Google Scholar 

  3. Y.Y. Noh, N. Zhao, M. Caironi, H. Sirringhaus, Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2, 784–789 (2007)

    ADS  Google Scholar 

  4. J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Reports. 88, 1–41 (2015)

    Google Scholar 

  5. C. Adelmann, V. Sriramkumar, S. Van Elshocht, P. Lehnen, T. Conard, S. De Gendt, Dielectric properties of dysprosium- and scandium-doped hafnium dioxide thin films. Appl. Phys. Lett. 91, 37–40 (2007)

    Google Scholar 

  6. S. Pokhriyal, S. Biswas, Doping dependent high-frequency dielectric properties of Hf1-xTixO2 nanoparticles. Mater. Today Proc. 3, 1311–1319 (2016)

    Google Scholar 

  7. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices, (Univ. Press, Cambridge, 2013), p. 310 (ISBN 10: 1107635713; ISBN 13:9781107635715)

  8. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, H.S.P. Wong, Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE. 89, 259–287 (2001)

    Google Scholar 

  9. Y. Wang, Z. Yu, F. Zahid, L. Liu, Y. Zhu, J. Wang et al., Direct tunneling through high-κ amorphous HfO2: effects of chemical modification. J. Appl. Phys. 116(023703), 1–5 (2014)

    Google Scholar 

  10. Y. Cai, R. Huang, X. Shan, Y. Li, F. Zhou, Y. Wang, Program/erase injection current characteristics of a low-voltage low-power NROM using high-K materials as the tunnel dielectric. Semicond. Sci. Technol. 21, 507–512 (2006)

    ADS  Google Scholar 

  11. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Google Scholar 

  12. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). (80-.)

    ADS  Google Scholar 

  13. L.A. Falkovsky, Optical properties of graphene. J. Phys.: Conf Ser. 129(012004), 1–7 (2008)

    Google Scholar 

  14. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  15. S.J. Jeong, Y. Gu, J. Heo, J. Yang, C.S. Lee, M.H. Lee et al., Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors. Sci. Rep. 6, 1–12 (2016)

    Google Scholar 

  16. H. Ajlani, R. Othmen, M. Oueslati, A. Cavanna, A. Madouri, Graphene-capped InAs/GaAs quantum dots. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 31(214309), 1–7 (2013)

    Google Scholar 

  17. R. Othmen, H. Arezki, H. Ajlani, A. Cavanna, M. Boutchich, M. Oueslati et al., Direct transfer and Raman characterization of twisted graphene bilayer. Appl. Phys. Lett. 106(103107), 1–5 (2015)

    Google Scholar 

  18. H. Ajlani, R. Othmen, A. Cavanna, A. Madouri, M. Oueslati, Raman spectroscopy study of annealed incommensurate graphene bilayer on SiO2 substrate. Superlattices Microstruct. 90, 96–106 (2016)

    ADS  Google Scholar 

  19. M. Souibgui, H. Ajlani, A. Cavanna, M. Oueslati, A. Meftah, A. Madouri, Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride. Superlattices Microstruct. 112, 394–403 (2017)

    ADS  Google Scholar 

  20. R. Jiang, Z.R. Wu, Z.Y. Han, H.S. Jung, HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial. Chinese Phys. B. 25, 1–5 (2016)

    Google Scholar 

  21. C. Mannequin, A. Delamoreanu, L. Latu-Romain, V. Jousseaume, H. Grampeix, S. David et al., Graphene-HfO2-based resistive RAM memories. Microelectron. Eng. 161, 82–86 (2016)

    Google Scholar 

  22. C. Zhang, D. Xie, J.L. Xu, X.M. Li, Y.L. Sun, R.X. Dai et al., HfO2 dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima. J. Appl. Phys. 118(144301), 1–7 (2015)

    Google Scholar 

  23. W.L. Scopel, A. Fazzio, R.H. Miwa, T.M. Schmidt, Graphene on amorphous HfO2 surface: an ab initio investigation. Phys. Rev. B. Condens. Matter Mater. Phys. 87, 3–8 (2013)

    Google Scholar 

  24. A. Konar, T. Fang, D. Jena, Effect of high-κ gate dielectrics on charge transport in graphene-based field-effect transistors. Phys. Rev. B—Condens Matter Mater. Phys. 82, 1–7 (2010)

    Google Scholar 

  25. J.L. Gavartin, D.M. Ramo, A.L. Shluger, G. Bersuker, B.H. Lee, Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 10–13 (2006)

    Google Scholar 

  26. Y. Zhang, Y.Y. Shao, X.B. Lu, M. Zeng, Z. Zhang, X.S. Gao et al., Defect states and charge trapping characteristics of HfO2 films for high performance nonvolatile memory applications. Appl. Phys. Lett. 105(172902), 1–5 (2014)

    Google Scholar 

  27. A. Kerber, E.A. Cartier, Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks. IEEE Trans. Device Mater. Reliab. 9, 147–162 (2009)

    Google Scholar 

  28. K. Takagi, T. Ono, First-principles study on leakage current caused by oxygen vacancies at HfO2/SiO2/Si interface. Jpn. J. Appl. Phys. 57, 066501–66511 (2018)

    ADS  Google Scholar 

  29. K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Konno, T. Chikyo, H. Kitajima, T. Arikado, Jpn, oxygen vacancy induced substantial threshold voltage shifts in the hf-based high-K MISFET with p+poly-Si gates -a theoretical approach. Jpn. J. Appl. Phys. 43(1413), 1–35 (2004)

    Google Scholar 

  30. J. Robertson, O. Sharia, A.A. Demkov, Fermi level pinning by defects in Hf O2 -metal gate stacks. Appl. Phys. Lett. 91, 2005–2008 (2007)

    Google Scholar 

  31. X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker, Q. Zhang et al., Toward clean and crackless transfer of graphene. ACS Nano 5(11), 9144–9153 (2011)

    Google Scholar 

  32. M. Castriota, G.G. Politano, C. Vena, M.P. De Santo, G. Desiderio, M. Davoli et al., Variable angle spectroscopic ellipsometry investigation of CVD-grown monolayer graphene. Appl. Surf. Sci. 467–468, 213–220 (2019)

    ADS  Google Scholar 

  33. M. Kumar, N. Kumari, V. Karar, A.L. Sharma, Variable angle spectroscopic ellipsometric characterization of HfO2 thin film. IOP Conf. Ser. Mater. Sci. Eng. 310(1), 012132 (2018)

  34. F. Tuinstra, L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    ADS  Google Scholar 

  35. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    ADS  Google Scholar 

  36. L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)

    ADS  Google Scholar 

  37. C. Casiraghi, Doping dependence of the Raman peaks intensity of graphene close to the Dirac point. Phys. Rev. B—Condens Matter Mater. Phys. 80, 2–4 (2009)

    Google Scholar 

  38. W.X. Wang, S.H. Liang, T. Yu, D.H. Li, Y.B. Li, X.F. Han, The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. 109, 1–3 (2011)

    Google Scholar 

  39. R. Beams, L. Gustavo Cançado, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter. 27, 1–26 (2015)

    Google Scholar 

  40. H. Yan, F. Xia, W. Zhu, M. Freitag, C. Dimitrakopoulos, A.A. Bol et al., Infrared spectroscopy of wafer-scale graphene. ACS Nano 5(12), 9854–9860 (2011)

    Google Scholar 

  41. B. Fallahazad, S. Kim, L. Colombo, E. Tutuc, Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric. Appl. Phys. Lett. 97, 2–5 (2010)

    Google Scholar 

  42. V. Gritsenko, D. Gritsenko, S. Shaimeev, V. Aliev, K. Nasyrov, S. Erenburg et al., Atomic and electronic structures of amorphous ZrO2 and HfO2 films. Microelectron. Eng. 81, 524–529 (2005)

    Google Scholar 

  43. J. Strand, M. Kaviani, A.L. Shluger, Defect creation in amorphous HfO2 facilitated by hole and electron injection. Microelectron. Eng. 178, 279–283 (2017)

    Google Scholar 

  44. T.V. Perevalov, V.A. Gritsenko, D.R. Islamov, I.P. Prosvirin, Electronic structure of oxygen vacancies in the orthorhombic noncentrosymmetric phase Hf0.5Zr0.5O2. JETP Lett. 107, 55–60 (2018)

    ADS  Google Scholar 

  45. T.V. Perevalov, D.V. Gulyaev, V.S. Aliev, K.S. Zhuravlev, V.A. Gritsenko, A.P. Yelisseyev et al., The origin of 2.7 eV blue luminescence band in zirconium oxide. J. Appl. Phys. 116(24), 244109 (2014)

    ADS  Google Scholar 

  46. D.R. Islamov, V.A. Gritsenko, V.N. Kruchinin, E.V. Ivanova, M.V. Zamoryanskaya, M.S. Lebedev, The evolution of the conductivity and cathodoluminescence of the films of hafnium oxide in the case of a change in the concentration of oxygen vacancies. Phys. Solid State. 60, 2050–2057 (2018)

    ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ajlani.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Maad, Y., Durnez, A., Ajlani, H. et al. Modulation of electron transfer in Si/SiO2/HfO2/Graphene by the HfO2 thickness. Appl. Phys. A 126, 754 (2020). https://doi.org/10.1007/s00339-020-03935-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03935-2

Keywords

Navigation