Skip to main content

Advertisement

Log in

Electro-Stimulated Release of Poorly Water-Soluble Drug from Poly(Lactic Acid)/Carboxymethyl Cellulose/ZnO Nanocomposite Film

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Among various types of external stimuli-responsive DDS, electric-responsive DDS are more promising carriers as they exploit less complex, easily miniaturized electric signal generators and the possibility of fine-tuning the electric signals. This study investigates the use of intrinsically biocompatible biopolymers in electro-simulative drug delivery to enhance the release of poorly-soluble/non-ionic drug.

Methods

CMC/PLA/ZnO/CUR nanocomposite films were prepared by the dispersion of CMC and ZnO NPs in solubilized PLA/curcumin medium, followed by solvent casting step. Curcumin is poorly water-soluble and used as the model drug in this study. The films with different contents of CMC, PLA and ZnO NPs were characterized using FTIR, impedance spectroscopy, tensile testing and FESEM imaging. The in vitro drug release of the films was carried out in deionized water under DC electric field of 4.5 V.

Results

The ionic conductivity of the films increased with increasing the CMC concentration of the film. The addition of a small amount of ZnO NPs (2%) successfully restored the tensile properties of the film. In response to the application of the electric field, the composite films released drug with a near-linear profile. There was no noticeable amount of passive diffusion of the drug from the film with the absence of the electric field.

Conclusion

The outcome of this study enabled the design of an electric-responsive nanocomposite platform for the delivery of poorly water-soluble/non-ionic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATR:

Attenuated total reflection

CMC:

Carboxymethyl cellulose

CPE:

Constant phase element

CTC:

Charge transfer complexes

CUR:

Curcumin

DC:

Direct current

DDS:

Drug delivery systems

DEX:

Dexamethasone

FESEM:

Field emission scanning electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

GO:

Graphene oxide

NP:

Nanoparticle

PBS:

Phosphate-buffered saline

PLA:

Poly(lactic acid)

PPy:

Polypyrrole

PVA:

Polyvinyl alcohol

SGF:

Simulated gastric fluid

UV:

Ultraviolet

Zi:

Frequency dependence impedance properties- reactive part

Zr:

Frequency dependence impedance properties-real part

References

  1. Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10(6):2341–53.

    CAS  PubMed  Google Scholar 

  2. Cui M, Shao Z, Lu D, Wang Y. Eco-friendly electrochemical biosensor based on sodium Carboxymethyl cellulose/reduced Graphene oxide composite. Macromol Res. 2019;27(4):327–33.

    CAS  Google Scholar 

  3. Nagesh M, Senthilkumar P, Jenifer Selvarani A, Raji P, Kasipandian K, Ponnaiah P, et al. Electricity generation using carboxymethyl cellulose and kitchen waste as substrate by Exiguobacterium sp SU-5 in mediatorless microbial fuel cell. J Pure Appl Microbiol. 2019;13(4):2151–8.

    CAS  Google Scholar 

  4. Knopf GK, Sinar D, Andrushchenko A, Nikumb S, editors. Flexible electrical circuits printed on polymers using graphene-cellulose inks. 2016 IEEE International Symposium on Circuits and Systems (ISCAS); 2016: IEEE.

  5. Barras R, Cunha I, Gaspar D, Fortunato E, Martins R, Pereira L. Printable cellulose-based electroconductive composites for sensing elements in paper electronics. Flex Print Electron. 2017;2(1):014006.

    Google Scholar 

  6. Pyarasani RD, Jayaramudu T, John A. Polyaniline-based conducting hydrogels. J Mater Sci. 2019;54(2):974–96.

    CAS  Google Scholar 

  7. El-Sayed NS, Moussa MA, Kamel S, Turky G. Development of electrical conducting nanocomposite based on carboxymethyl cellulose hydrogel/silver nanoparticles@ polypyrrole. Synth Met. 2019;250:104–14.

    CAS  Google Scholar 

  8. Samsudin A, Isa M, editors. Conductivity and transport properties study of plasticized carboxymethyl cellulose (CMC) based solid biopolymer electrolytes (SBE). Advanced Materials Research; 2014: Trans Tech Publ.

  9. Ramlli MA, Chai M, Isa M, editors. Influence of propylene carbonate as a plasticizer in CMC-OA based biopolymer electrolytes: conductivity and electrical study. Advanced Materials Research; 2013: Trans Tech Publ.

  10. Chai M, Isa M. Novel proton conducting solid bio-polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol. Sci Rep. 2016;6(1):1–7.

    Google Scholar 

  11. Ramlli M, Maksud M, Isa M, editors. Characterization of polyethylene glycol plasticized carboxymethyl cellulose-ammonium fluoride solid biopolymer electrolytes. AIP Conference Proceedings; 2017: AIP Publishing LLC.

  12. Rudhziah S, Ahmad A, Ahmad I, Mohamed N. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell. Electrochim Acta. 2015;175:162–8.

    CAS  Google Scholar 

  13. Saadiah M, Samsudin A, editors. Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes. IOP Conference Series: Materials Science and Engineering; 2018: IOP Publishing.

  14. Isa M, Samsudin A. An enhancement on electrical properties of carboxymethyl cellulose-NH4Br based biopolymer electrolytes through impedance characterization. Int J Polym Anal Charact. 2017;22(5):447–54.

    CAS  Google Scholar 

  15. Hadi A, Hashim A. Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr J Phys. 2017;62(12):1044.

    Google Scholar 

  16. Park CH, Kim DW, Prakash J, Sun Y-K. Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics. 2003;159(1–2):111–9.

    CAS  Google Scholar 

  17. Low S, Ahmad A, Hamzah H, Rahman MYA. Nanocomposite solid polymeric electrolyte of 49% poly (methyl methacrylate)-grafted natural rubber–titanium dioxide–lithium tetrafluoroborate (MG49-TiO 2-LiBF 4). J Solid State Electrochem. 2011;15(11–12):2611–8.

    CAS  Google Scholar 

  18. Zhao X, Clifford A, Poon R, Mathews R, Zhitomirsky I. Carboxymethyl cellulose and composite films prepared by electrophoretic deposition and liquid-liquid particle extraction. Colloid Polym Sci. 2018;296(5):927–34.

    CAS  Google Scholar 

  19. Holmes R, Wolfe SW. Effect of carboxymethylcellulose on the electrophoresis of serum proteins on paper. Arch Biochem Biophys. 1960;87(1):13–8.

    CAS  Google Scholar 

  20. Johnson G, Lewis K. Mechanism for the anti-redeposition action of sodium carboxy-methyl cellulose with cotton. II. Colloid-stability theory applied to the fibre-soil system. J Appl Chem. 1967;17(10):283–7.

    CAS  Google Scholar 

  21. Andonegi M, Peñalba M, de la Caba K, Guerrero P. ZnO nanoparticle-incorporated native collagen films with electro-conductive properties. Mater Sci Eng C. 2020;108:110394.

    CAS  Google Scholar 

  22. Yang Y, Ching YC, Chuah CH. Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers. 2019;11(751). https://doi.org/10.3390/polym11050751.

  23. Siddiqi KS, ur Rahman A, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13(1):1–13.

    Google Scholar 

  24. Sampath U, Ching YC, Chuah CH, Sabariah J, Lin PC. Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials. 2016;9(12):991.

    PubMed Central  Google Scholar 

  25. Yi Y, Sun J, Lu Y, Liao Y. Programmable and on-demand drug release using electrical stimulation. Biomicrofluidics. 2015;9(2):022401

  26. Udenni Gunathilake, Ching YC, Ching KY, Chuah CH, . Abdullah LC, Biomedical and microbiological applications of bio-based porous materials: a review. Polymers 2017. 9 (5): 160.

    Google Scholar 

  27. Sampath UTM, Ching YC, Chuah CH, Singh R, Lin PC. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose. 2017;24(5):2215–28.

    CAS  Google Scholar 

  28. Thennakoon MSUG, Ching YC, Chuah CH, Noorsaadah AR, Liou NS. Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int J Biol Macromol. 2020;158:670–88.

    Google Scholar 

  29. Puiggalí-Jou A, Micheletti P, Estrany F, del Valle LJ, Alemán C. Electrostimulated release of neutral drugs from Polythiophene nanoparticles: smart regulation of drug–polymer interactions. Adv Healthc Mater. 2017;6(18):1700453.

    Google Scholar 

  30. Puiggalí-Jou A, Del Valle LJ, Alemán C. Cell responses to electrical pulse stimulation for anticancer drug release. Materials. 2019;12(16):2633.

    PubMed Central  Google Scholar 

  31. Puiggalí-Jou A, Cejudo A, del Valle LJ, Alemán C. Smart drug delivery from electrospun fibers through electroresponsive polymeric nanoparticles. ACS Appl Bio Mater. 2018;1(5):1594–605.

    Google Scholar 

  32. Fu L-H, Qi C, Ma M-G, Wan P. Multifunctional cellulose-based hydrogels for biomedical applications. J Mater Chem B. 2019;7(10):1541–62.

    CAS  PubMed  Google Scholar 

  33. Butun S, Ince FG, Erdugan H, Sahiner N. One-step fabrication of biocompatible carboxymethyl cellulose polymeric particles for drug delivery systems. Carbohydr Polym. 2011;86(2):636–43.

    CAS  Google Scholar 

  34. Veeramachineni AK, Sathasivam T, Muniyandy S, Janarthanan P, Langford SJ, Yan LY. Optimizing extraction of cellulose and synthesizing pharmaceutical grade carboxymethyl sago cellulose from malaysian sago pulp. Appl Sci. 2016;6(6):170.

    Google Scholar 

  35. Suntako R. Effect of zinc oxide nanoparticles synthesized by a precipitation method on mechanical and morphological properties of the CR foam. Bull Mater Sci. 2015;38(4):1033–8.

    CAS  Google Scholar 

  36. Mohammed NA, Habil NY. Evaluation of antimicrobial activity of curcumin against two oral bacteria. Autom Control Intell Syst. 2015;3:18–21.

    Google Scholar 

  37. Vitamin P. Formulation and physical characterization of microemulsions based carboxymethyl cellulose as vitamin C carrier. Malaysian J Anal Sci. 2015;19(1):275–83.

    Google Scholar 

  38. Rokesh K, Nithya A, Jeganathan K, Jothivenkatachalam K. A facile solid state synthesis of cone-like ZnO microstructure an efficient solar-light driven photocatalyst for rhodamine B degradation. Materials Today: Proceedings. 2016;3(10):4163–72.

    Google Scholar 

  39. de Peres ML, Delucis RA, Amico SC, Gatto DA. Zinc oxide nanoparticles from microwave-assisted solvothermal process: Photocatalytic performance and use for wood protection against xylophagous fungus. Nanomater Nanotechno. 2019;9:1847980419876201.

    Google Scholar 

  40. Manyasree D, Kiranmayi P, Venkata RK. Characterization and antibacterial activity of ZnO nanoparticles synthesized by co-precipitation method. Int J App Pharm. 2018;10(6):224–8.

    CAS  Google Scholar 

  41. Gunathilake TMSU, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al. Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int J Biol Macromol. 2018;118:1055–64.

    Google Scholar 

  42. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. 2005;102(6):1069–79.

    CAS  Google Scholar 

  43. Bich VT, Thuy NT, Binh NT, Huong NTM, Yen PND, Luong TT. Structural and spectral properties of curcumin and metal-curcumin complex derived from turmeric (Curcuma longa). Physics and engineering of new materials: Springer. 2009:271–8.

  44. Chieng B, Ibrahim N, Yunus W, Hussein M. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers. 2014;6(1):93–104.

    Google Scholar 

  45. Udeni Gunathilake T, Ching YC, Chuah CH. Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers. 2017;9(2):64.

    PubMed Central  Google Scholar 

  46. Abouzari MS, Berkemeier F, Schmitz G, Wilmer D. On the physical interpretation of constant phase elements. Solid State Ionics. 2009;180(14–16):922–7.

    Google Scholar 

  47. Wei S, Ching YC, Chuah CH. Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydr Polym. 2019;231:115744. https://doi.org/10.1016/j.carbpol.2019.115744.

    Article  CAS  PubMed  Google Scholar 

  48. Morsi M, Oraby A, Elshahawy A, El-Hady RA. Preparation, structural analysis, morphological investigation and electrical properties of gold nanoparticles filled polyvinyl alcohol/carboxymethyl cellulose blend. J Mater Res Technol. 2019;8(6):5996–6010.

    CAS  Google Scholar 

  49. Kale RD, Gorade VG, Madye N, Chaudhary B, Bangde PS, Dandekar PP. Preparation and characterization of biocomposite packaging film from poly (lactic acid) and acylated microcrystalline cellulose using rice bran oil. Int J Biol Macromol. 2018;118:1090–102.

    CAS  PubMed  Google Scholar 

  50. H-x L, Zare Y, Rhee KY. The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions. Mater Chem Phys. 2018;207:76–83.

    Google Scholar 

  51. Razavi R, Zare Y, Rhee KY. A model for tensile strength of polymer/carbon nanotubes nanocomposites assuming the percolation of interphase regions. Colloids Surf Physicochem Eng Aspects. 2018;538:148–54.

    CAS  Google Scholar 

  52. Ashraf MA, Peng W, Zare Y, Rhee KY. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett. 2018;13(1):214.

    PubMed  PubMed Central  Google Scholar 

  53. Zare Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manuf. 2016;84:158–64.

    CAS  Google Scholar 

  54. Zare Y. Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology. J Colloid Interface Sci. 2016;465:342–6.

    CAS  PubMed  Google Scholar 

  55. Luo N, Varaprasad K, Reddy GVS, Rajulu AV, Zhang J. Preparation and characterization of cellulose/curcumin composite films. RSC Adv. 2012;2(22):8483–8.

    CAS  Google Scholar 

  56. Baek SK, Song KB. Characterization of active biodegradable films based on proso millet starch and curcumin. Starch-Stärke. 2019;71(3–4):1800174.

    Google Scholar 

  57. Ngo TMP, Dang TMQ, Tran TX, Rachtanapun P. Effects of zinc oxide nanoparticles on the properties of pectin/alginate edible films. Int J Polym Sci. 2018;2018:1–9.

    Google Scholar 

  58. Fakhari S, Jamzad M, Kabiri FH. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev. 2019;12(1):19–24.

    CAS  Google Scholar 

  59. Haniffa MACM, Hazlee AI, Ching YC, Shaliza I, Viorel S, Chuah CH. Nonisocyanate poly(hydroxyl urethane)-based green polymer hybrid coating systems: tailoring of biomacromolecular compound architecture using APTMS-ZnO/TEMPO-oxidized cellulose nanoparticles. ACS Omega. 2020;5(18):10315–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Salvador MD, Amigó V, Sahuquillo O, Antolinos CM, Segovia F, Vicente A, et al., editors. Thermal analysis of polymer resin matrix reinforced with E-glass fibers degradated in neutral environment. Proceedings of 11th European conference on composite materials; 2004.

  61. Shinyama K. Mechanical and electrical properties of polylactic acid with aliphatic-aromatic polyester. J Eng. 2018;2018:1–7.

    Google Scholar 

  62. Qiao R, Deng H, Putz KW, Brinson LC. Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. J Polym Sci B Polym Phys. 2011;49(10):740–8.

    CAS  Google Scholar 

  63. Restrepo I, Benito N, Medinam C, Mangalaraja R, Flores P, Rodriguez-Llamazares S. Development and characterization of polyvinyl alcohol stabilized polylactic acid/ZnO nanocomposites. Mater Res Express. 2017;4(10):105019.

    Google Scholar 

  64. Kim I, Viswanathan K, Kasi G, Sadeghi K, Thanakkasaranee S, Seo J. Poly (lactic acid)/ZnO bionanocomposite films with positively charged ZnO as potential antimicrobial food packaging materials. Polymers. 2019;11(9):1427.

    CAS  PubMed Central  Google Scholar 

  65. Aouat T, Kaci M, Devaux E, Campagne C, Cayla A, Dumazert L, et al. Morphological, mechanical, and thermal characterization of poly (lactic acid)/cellulose multifilament fibers prepared by melt spinning. Adv Polym Technol. 2018;37(4):1193–205.

    CAS  Google Scholar 

  66. Aouat T, Kaci M, Lopez-Cuesta J-M, Devaux E. Investigation on the durability of PLA Bionanocomposite fibers under hygrothermal conditions. Front Mater Sci. 2019;6:323–15.

    Google Scholar 

  67. Ching YC, Gunathilake TMS, Chuah CH, Ching KY, Singh R, Liou NS. Curcumin/tween 20-incorporated cellulose nanoparticles with enhanced curcumin solubility for nano-drug delivery: characterization and in vitro evaluation. Cellulose. 2019;26(9):5467–81.

    CAS  Google Scholar 

  68. Silvestre C, Cimmino S, Pezzuto M, Marra A, Ambrogi V, Dexpert-Ghys J, et al. Preparation and characterization of isotactic polypropylene/zinc oxide microcomposites with antibacterial activity. Polym J. 2013;45(9):938–45.

    CAS  Google Scholar 

  69. Ramos M, Fortunati E, Peltzer M, Jimenez A, Kenny JM, Garrigós MC. Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polym Degrad Stab. 2016;132:2–10.

    CAS  Google Scholar 

  70. Hu C, Li Y, Zhang N, Ding Y. Synthesis and characterization of a poly (o-anisidine)–SiC composite and its application for corrosion protection of steel. RSC Adv. 2017;7(19):11732–42.

    CAS  Google Scholar 

  71. Díez-Pascual AM, Díez-Vicente AL. Poly (3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci. 2014;15(6):10950–73.

    PubMed  PubMed Central  Google Scholar 

  72. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    CAS  PubMed  Google Scholar 

  73. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotech. 2019;7.

  74. Swamy BY, Yun Y-S. In vitro release of metformin from iron (III) cross-linked alginate–carboxymethyl cellulose hydrogel beads. Int J Biol Macromol. 2015;77:114–9.

    CAS  PubMed  Google Scholar 

  75. Kadry G. Comparison between gelatin/carboxymethyl cellulose and gelatin/carboxymethyl nanocellulose in tramadol drug loaded capsule. Heliyon. 2019;5(9):e02404.

    PubMed  PubMed Central  Google Scholar 

  76. Reich G. Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables. Eur J Pharm Biopharm. 1998;45(2):165–71.

    CAS  PubMed  Google Scholar 

  77. Madusanka N, de Silva KN, Amaratunga G. A curcumin activated carboxymethyl cellulose–montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media. Carbohydr Polym. 2015;134:695–9.

    CAS  PubMed  Google Scholar 

  78. Ung VY, Foshaug RR, MacFarlane SM, Churchill TA, Doyle JS, Sydora BC, et al. Oral administration of curcumin emulsified in carboxymethyl cellulose has a potent anti-inflammatory effect in the IL-10 gene-deficient mouse model of IBD. Dig Dis Sci. 2010;55(5):1272–7.

    CAS  PubMed  Google Scholar 

  79. Thennakoon MSU, Ching YC, Chuah CH, Noorsaadah AR, Liou NS. pH-responsive poly(lactic acid)/sodium carboxymethyl cellulose film for enhanced delivery of curcumin in vitro. Journal of Drug Delivery Science and Technology. 2020;58:101787.

    Google Scholar 

  80. Lopez CG, Colby RH, Cabral JT. Electrostatic and hydrophobic interactions in NaCMC aqueous solutions: effect of degree of substitution. Macromolecules. 2018;51(8):3165–75.

    CAS  Google Scholar 

  81. Wang C, Zheng Y. Oral 4-(N)-stearoyl gemcitabine nanoparticles inhibit tumor growth in mouse models. Oncotarget. 2017;8(52):89876–86.

    PubMed  PubMed Central  Google Scholar 

  82. Moussawi RN, Patra D. Nanoparticle self-assembled grain like curcumin conjugated ZnO: curcumin conjugation enhances removal of perylene, fluoranthene and chrysene by ZnO. Sci Rep. 2016;6(1):1–13.

    Google Scholar 

  83. Khosropanah MH, Dinarvand A, Nezhadhosseini A, Haghighi A, Hashemi S, Nirouzad F, et al. Analysis of the antiproliferative effects of curcumin and nanocurcumin in MDA-MB231 as a breast cancer cell line. Iran J Pharm Res. 2016;15(1):231–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Koohpar ZK, Entezari M, Movafagh A, Hashemi M. Anticancer activity of curcumin on human breast adenocarcinoma: role of Mcl-1 gene. Iran J Cancer Prev. 2015;8(3).

  85. Gardella L, Colonna S, Fina A, Monticelli O. A novel electrostimulated drug delivery system based on PLLA composites exploiting the multiple functions of graphite nanoplatelets. ACS Appl Mater Interfaces. 2016;8(37):24909–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4(8):1158–71.

    CAS  Google Scholar 

  87. Langer R. Drug delivery and targeting. Nature. 1998;392(6679 Suppl):5–10.

    CAS  PubMed  Google Scholar 

  88. Dash A, Cudworth G II. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods. 1998;40(1):1–12.

    CAS  PubMed  Google Scholar 

  89. Hetal T, Bindesh P, Sneha T. A review on techniques for oral bioavailability enhancement of drugs. Int J Pharm Sci Rev Res. 2010;4(3):033.

    Google Scholar 

  90. Shah P, Goodyear B, Michniak-Kohn BB. A review: enhancement of solubility and oral bioavailability of poorly soluble drugs. Adv Pharm J. 2017;2(5):161–73.

    Google Scholar 

  91. Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 2018;10(12):1379.

    PubMed Central  Google Scholar 

  92. Grumezescu V, Grumezescu A. Materials for biomedical engineering: thermoset and thermoplastic polymers: Elsevier; 2019.

  93. Song B, Zhao M, Forrester JV, McCaig CD. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci. 2002;99(21):13577–82.

    CAS  PubMed  Google Scholar 

  94. Hess R, Jaeschke A, Neubert H, Hintze V, Moeller S, Schnabelrauch M, et al. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs. Biomaterials. 2012;33(35):8975–85.

    CAS  PubMed  Google Scholar 

  95. Antov Y, Barbul A, Mantsur H, Korenstein R. Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J. 2005;88(3):2206–23.

    CAS  PubMed  Google Scholar 

  96. Teissie J, Rols M-P. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J. 1993;65(1):409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yern Chee Ching.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Poly(lactic acid)/carboxymethyl cellulose/ZnO/curcumin nanocomposite film was prepared using solvent casting method.

The emulsification and electrophoretic properties of carboxymethyl cellulose have been utilized for the electro-stimulated drug delivery process.

The study demonstrates the approach to trigger the release of poorly water-soluble and non-ionic drugs under electric stimulation.

The film does not show noticeable natural drug release providing that the total control of drug release under electrical stimulation.

The biopolymers provide an alternative for the use of nondegradable conductive polymers in electro-simulative drug delivery systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunathilake, T.M.S.U., Ching, Y.C., Chuah, C.H. et al. Electro-Stimulated Release of Poorly Water-Soluble Drug from Poly(Lactic Acid)/Carboxymethyl Cellulose/ZnO Nanocomposite Film. Pharm Res 37, 178 (2020). https://doi.org/10.1007/s11095-020-02910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02910-z

Key Words

Navigation