Skip to main content
Log in

Role of MANF, TIMP-2, and Irisin Proteins in Aging

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The issues of increasing life span and significant improvement in its quality are relevant for modern gerontology. The review discusses one of the proposed methods to slow the aging of an organism via the transfusion of blood or plasma from young people to senile ones. Information on the structure, properties, and functions of TIMP-2, MANF, and irisin protein growth factors, which are contained in large amounts in the blood of young organisms, is presented. Experiments on animals showed an increase in their life span and improvement of their cognitive abilities under the effect of these factors. They are of great importance for the enhancement of neurogenesis in the brain, improvement of the cardiovascular and immune system functions, and cancer prevention. The relationship between the high content of irisin in the blood of young organisms and telomere lengthening, its role in eliminating signs of Alzheimer’s disease, mouse modeling, and the elimination of cerebrovascular ischemia were revealed. The administration of umbilical cord blood with a high TIMP-2 content to old mice improves synaptic plasticity and cognitive functions. Further research on the geroprotection effects of blood transfusions from young organisms to aging ones shows promise for the creation of drugs based on these proteins for the treatment of neurodegenerative diseases and cerebrovascular pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Ahlskog, J.E., Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology, 2011, vol. 77, pp. 288–294.

    PubMed  PubMed Central  Google Scholar 

  2. Ahn, M.Y., Kim, B.J., Kim, H.J., et al., Anti-cancer effect of dung beetle glycosaminoglycans on melanoma, BMC Cancer, 2019, vol. 19, no. 1, p. 9.

    PubMed  PubMed Central  Google Scholar 

  3. Aicardi, G., Young blood plasma administration to fight Alzheimer’s disease? Rejuvenation Res., 2018, vol. 21, no. 2, pp. 178–181.

    PubMed  Google Scholar 

  4. Amico, F., Briggs, G., and Balogh, Z.J., Transfused trauma patients have better outcomes when transfused with blood components from young donors, Med. Hypotheses, 2019, vol. 122, pp. 141–146.

    PubMed  Google Scholar 

  5. Arida, R.M., Cavalheiro, E.A., da Silva, A.C., et al., Physical activity and epilepsy: proven and predicted benefits, Sports Med. (Auckland), 2007, vol. 38, pp. 607–615.

    Google Scholar 

  6. Aronis, K.N., Moreno, M., Polyzos, S.A., et al., Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events, Int. J. Obes. (London), 2015, vol. 1, pp. 156–161.

    Google Scholar 

  7. Asadi, Y., Gorjipour, F., Behrouzifar, S., et al., Irisin peptide protects brain against ischemic injury through reducing apoptosis and enhancing BDNF in a rodent model of stroke, Neurochem. Res., 2018, vol. 43, no. 8, pp. 1549–1560.

    CAS  PubMed  Google Scholar 

  8. Askari, H., Rajani, S.F., Poorebrahim, M., et al., Glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: an introductory review, Pharmacol. Res., 2018, vol. 129, pp. 44–55.

    CAS  PubMed  Google Scholar 

  9. Assyov, Y., Gateva, A., Tsakova, A., et al., Irisin in the glucose continuum, Exp. Clin. Endocrinol. Diabetes, 2016, vol. 124, no. 1, pp. 22–27.

    CAS  PubMed  Google Scholar 

  10. Aydin, S., Kuloglu, T., Ozercan, M.R., et al., Irisin immunohistochemistry in gastrointestinal system cancers, Biotech. Histochem., 2016, vol. 91, no. 4, pp. 242–250.

    CAS  PubMed  Google Scholar 

  11. Belviranli, M., Okudan, N., Kabak, B., et al., The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes, Physician Sportsmed., 2016, vol. 44, no. 3, pp. 290–296.

    Google Scholar 

  12. Boada, M., Anaya, F., Ortiz, P., et al., Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in Alzheimer’s disease patients: a multicenter, randomized, controlled clinical trial, J. Alzheimer’s Dis., 2017, vol. 56, no. 1, pp. 129–143.

    CAS  Google Scholar 

  13. Bogomolets, A.A., Izbrannye trudy (Selected Research Works), Kiev: Akad. Nauk UkrSSR, 1957, vol. 2, p. 419.

    Google Scholar 

  14. Bonewald, L., Use it or lose it to age: a review of bone and muscle communication, Bone, 2018, vol. 120, pp. 212–218.

    PubMed  PubMed Central  Google Scholar 

  15. Buchman, A.S., Boyle, P.A., Yu, L., et al., Total daily physical activity and the risk of AD and cognitive decline in older adults, Neurology, 2012, vol. 78, pp. 1323–1329.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Büyüktuna, S.A., Doğan, H.O., Bakır, D., et al., Increased irisin concentrations in patients with Crimean-Congo hemorrhagic fever, Jpn. J. Infect. Dis., 2017, vol. 70, no. 5, pp. 475–478.

    PubMed  Google Scholar 

  17. Castellano, J.M., Fuster, V., Jennings, C., et al., Role of the polypill for secondary prevention in ischemic heart disease, Eur. J. Prev. Cardiol., 2017, vol. 24, no. 3, pp. 44–51. https://doi.org/10.1177/2047487317707324

    Article  PubMed  Google Scholar 

  18. Chalisova, N.I., Ryzhak, A.P., Lin’kova, N.S., et al., The effect of polypeptides on cell regeneration in a culture of different tissues of young and old rats, Usp. Gerontol., 2015, vol. 28, no. 1, pp. 93–107.

    Google Scholar 

  19. Chazova, I.E., Oshchepkova, E.V., and Zhernakova, Yu.V., Diagnostics and treatment of arterial hypertension, Kardiol. Vestn., 2015, no. 1, pp. 3–30.

  20. Cotman, C.W., Berchtold, N.C., and Christie, L.A., Exercise builds brain health: key roles of growth factor cascades and inflammation, Trends Neurosci., 2007, vol. 30, pp. 464–472.

    CAS  PubMed  Google Scholar 

  21. Danilova, T., Belevich, I., Li, H., et al., MANF is required for the postnatal expansion and maintenance of pancreatic β-cell mass in mice, Diabetes, 2019, vol. 68, no. 1, pp. 66–80.

    CAS  PubMed  Google Scholar 

  22. Davidov, S.O., Kuznik, B.I., Stepanov, A.V., et al., The effect of kinesitherapy on the content of the “hormone of youth” irisin in healthy people and patients with coronary heart disease, Vestn. Vosstanov. Med., 2015, vol. 5, pp. 91–98.

    Google Scholar 

  23. De Meneck, F, Victorino de Souza, L, Oliveira, V., et al., High irisin levels in over weight/obese children and its positive correlation with metabolic profile, blood pressure, and endothelial progenitor cells, Nutr. Metab. Cardiovasc. Dis., 2018, vol. 28, no. 7, pp. 756–764.

    CAS  PubMed  Google Scholar 

  24. Donskov, S.I. and Yagodinskii, V.N., Last days of A.A. Bogdanov: chronicle of tragedy, Vestn. Sluzhby Krovi Ross., 2006, vol. 1, pp. 1–8.

    Google Scholar 

  25. El-Lebedy, D.H., Ibrahim, A.A., and Ashmawy, I.O., Novel adipokines vaspin and irisin as risk biomarkers for cardiovascular diseases in type 2 diabetes mellitus, Diabetes Metab. Syndrome, 2018, vol. 12, no. 5, pp. 643–648.

    Google Scholar 

  26. Emanuele, E., Minoretti, P., Pareja-Galeano, H., et al., Serum irisin levels, precocious myocardial infarction, and healthy exceptional longevity, Am. J. Med., 2014, vol. 127, no. 9, pp. 888–890.

    CAS  PubMed  Google Scholar 

  27. Gannon, N.P., Vaughan, R.A., Garcia-Smith, R., et al., Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro, Int. J. Cancer, 2015, vol. 136, no. 4, pp. 197–202.

    Google Scholar 

  28. Gizaw, M., Anandakumar, P., and Debela, T.A., Review on the role of irisin in insulin resistance and type 2 diabetes mellitus, J. Pharmacopuncture, 2017, no. 4, pp. 235–242.

  29. Habib, A., Hou, H., Mori, T., et al., Human umbilical cord blood serum-derived alpha-secretase: functional testing in Alzheimer’s disease mouse models, Cell Transplant., 2018, vol. 27, pp. 438–455.

    PubMed  PubMed Central  Google Scholar 

  30. Hayashi, Y., Mikawa, S., Masumoto, K., et al., GDF11 expression in the adult rat central nervous system., J. Chem. Neuroanat., 2018, vol. 89, pp. 21–36.

    CAS  PubMed  Google Scholar 

  31. He, L., He, W.Y., Yang, W.L., et al., Lower serum irisin levels are associated with increased vascular calcification in hemodialysis patients, Kidney Blood Pressure Res., 2018, vol. 43, no. 1, pp. 287–295.

    Google Scholar 

  32. Hernandez-Trejo, M., Garcia-Rivas, G., Torres-Quintanilla, A., et al., Relationship between irisin concentration and serum cytokines in mother and newborn, PLoS One, 2016, vol. 11, no. 11, p. 0165229.

    Google Scholar 

  33. Hisamatsu, T., Miura, K., and Arima, H., Relationship of serum irisin levels to prevalence and progression of coronary artery calcification: a prospective, population-based study, Int. J. Cardiol., 2018, vol. 267, pp. 177–182.

    PubMed  Google Scholar 

  34. Hofmann, B., Young blood rejuvenates old bodies: a call for reflection when moving from mice to men, Transfus. Med. Hemother., 2018, vol. 45, no. 1, pp. 67–71.

    PubMed  PubMed Central  Google Scholar 

  35. Icli, A., Cure, E., Cumhur Cure, M., et al., Novel myokine: irisin may be an independent predictor for subclinic atherosclerosis in Behçet’s disease, J. Invest. Med., 2016, vol. 64, no. 4, pp. 875–881.

    Google Scholar 

  36. Jeremic, N., Chaturvedi, P., and Tyagi, S.C., Browning of white fat: novel insight into factors, mechanisms, and therapeutics, J. Cell Physiol., 2017, vol. 232, no. 1, pp. 61–68.

    CAS  PubMed  Google Scholar 

  37. Kalkan, A.K., Cakmak, H.A., Erturk, M., et al., Adropin and irisin in patients with cardiac cachexia, Arq. Bras. Cardiol., 2018, vol. 111, no. 1, pp. 39–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Keles, E. and Turan, F.F., Evaluation of cord blood irisin levels in term newborns with small gestational age and appropriate gestational age, SpringerPlus, 2016, vol. 5, no. 1, pp. 1757.

    PubMed  PubMed Central  Google Scholar 

  39. Khavinson, V.Kh., Kuznik, B.I., and Ryzhak, G.A., Peptide bioregulators: a new class of geroprotectors, Report 2. The results of clinical trials, Adv. Gerontol., 2014, vol. 4, no. 4, pp. 346–361.

    Google Scholar 

  40. Khavinson, V.Kh., Kuznik, B.I., Tarnovskaya, S.I., et al., Peptides and CCL11 and HMGB1 as molecular markers of aging: literature review and own data, Adv. Gerontol., 2015, vol. 5, no. 3, pp. 133–140.

    Google Scholar 

  41. Khavinson, V.Kh., Kuznik, B.I., Tarnovskaya, S.I., et al., Short peptides and telomere length regulator hormone irisin, Bull. Exp. Biol. Med., 2016a, vol. 160, no. 3, pp. 347–349.

    CAS  PubMed  Google Scholar 

  42. Khavinson, V.Kh., Kuznik, B.I., Tarnovskaya, S.I., et al., GDF11 protein as a geroprotector, Biol. Bull. Rev., 2016b, vol. 6, no. 2, pp. 141–148.

    Google Scholar 

  43. Kim, J.H. and Kim, D.Y., Aquarobic exercises improve the serum blood irisin and brain-derived neurotrophic factor levels in elderly women, Exp. Gerontol., 2018, vol. 104, pp. 660–665.

    Google Scholar 

  44. Kuznik, B.I., Davidov, S.O., Stepanov, A.V., et al., The effect of kinesitherapeutic procedures on the content of irisin in women with cardiovascular diseases depending on body weight and hormonal status, Patol. Fiziol. Eksp. Ter., 2016, vol. 4, pp. 47–51.

    Google Scholar 

  45. Kuznik, B.I., Davidov, S.O., Stepanov, A.V., et al., Dynamics of the irisin concentration in the blood of hypertensive patients after exercises, Kardiologiya, 2017, vol. 57, pp. 77–78.

    CAS  PubMed  Google Scholar 

  46. Kuznik, B.I., Davidov, S.O., Smolyakov, Yu.N., et al., The role of “youth and old age” proteins in hypertension, Usp. Gerontol., 2018a, no. 3, pp. 362–367.

  47. Kuznik, B.I., Davydov, S.O., Stepanov, A.V., et al., The role of growth differentiation factors 11 and 15 (GDF11, GDF15), eotaxin-1 (CCL11) and junctional adhesion molecule a (JAM-A) in the regulation of blood pressure in women with essential hypertension, MOJ Gerontol. Geriatr., 2018b, vol. 3, no. 3, p. 00089.

    Google Scholar 

  48. Li, B., Yao, Q., Guo, S., et al., Type 2 diabetes with hypertensive patients results in changes to features of adipocytokines: leptin, irisin, LGR4, and Sfrp5, Clin. Exp. Hypertension, 2018, vol. 11, pp. 1–6.

    Google Scholar 

  49. Li, T., Xu, W., and Gao, L., Mesencephalic astrocyte-derived neurotrophic factor affords neuroprotection to early brain injury induced by subarachnoid hemorrhage via activating Akt-dependent prosurvival pathway and defending blood-brain barrier integrity, FASEB J., 2019, vol. 33, no. 2, pp. 1727–1741.

    CAS  PubMed  Google Scholar 

  50. Lindahl, M., Saarma, M., and Lindholm, P., Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential, Neurobiol. Dis., 2017, vol. 97, pp. 90–102.

    CAS  PubMed  Google Scholar 

  51. Lindholm, P., Peränen, J., et al., MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain, Mol. Cell. Neurosci., 2008, vol. 39, pp. 356–371.

    CAS  PubMed  Google Scholar 

  52. Lourenco, M.V., Frozza, R.L., de Freitas, G.B., et al., Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models, Nat. Med., 2019, vol. 25, no. 1, pp. 165–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mattson, M.P., Energy intake and exercise as determinants of brain health and vulnerability to injury and disease, Cell Metab., 2012, vol. 16, pp. 706–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nagel, F., Santer, D., and Stojkovic, S., The impact of age on cardiac function and extracellular matrix component expression in adverse post-infarction remodeling in mice, Exp. Gerontol., 2019, vol. 119, pp. 193–202.

    CAS  PubMed  Google Scholar 

  55. Neves, J., Zhu, J., Sousa-Victor, P., et al., Immune modulation by MANF promotes tissue repair and regenerative success in the retina, Science, 2016, vol. 353, no. 6294, art. ID aaf3646.

    PubMed  PubMed Central  Google Scholar 

  56. Neves, J., Sousa-Victor, P., and Jasper, H., Rejuvenating strategies for stem cell-based therapies in aging, Cell Stem Cell, 2017, vol. 20, no. 20, pp. 161–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Panagiotou, G., Mu, L., Na, B., J., et al., Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk, Metabolism, 2014, vol. 63, no. 10, pp. 1265–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Polyzos, S.A., Anastasilakis, A.D., Efstathiadou, Z.A., et al., Irisin in metabolic diseases, Endocrine, 2018, vol. 59, no. 2, pp. 260–274.

    CAS  PubMed  Google Scholar 

  59. Provatopoulou, X., Georgiou, G.P., Kalogera, E., et al., Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics, BMC Cancer, 2015, vol. 15, p. 898.

    PubMed  PubMed Central  Google Scholar 

  60. Rana, K.S., Arif, M., Hill, E.J., et al., Plasma irisin levels predict telomere length in healthy adults, Age (Dordrecht), 2014, vol. 36, no. 2, pp. 995–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Saadeldin, M.K., Elshaer, S.S., Emara, I.A., et al., Serum sclerostin and irisin as predictive markers for atherosclerosis in Egyptian type II diabetic female patients: a case control study, PLoS One, 2018, vol. 13, no. 11, p. 0206761.

    Google Scholar 

  62. Siteneski, A., Cunha, M.P., Lieberknecht, V., et al., Central irisin administration affords antidepressant-like effect and modulates neuroplasticity-related genes in the hippocampus and prefrontal cortex of mice, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2018, vol. 84, part A, pp. 294–303.

  63. Sousa-Victor, P., Jasper, H., Neves, J., et al., Trophic factors in inflammation and regeneration: the role of MANF and CDNF, Front. Physiol., 2018, vol. 9, p. 1629.

    PubMed  PubMed Central  Google Scholar 

  64. Sousa-Victor, P, García-Prat, L, and Muñoz-Cánoves, P., New mechanisms driving muscle stem cell regenerative decline with aging, Int. J. Dev. Biol., 2019, vol. 62, nos. 6–8, pp. 583–590.

    Google Scholar 

  65. Tanisawa, K., Taniguchi, H., Sun, X., et al., Common single nucleotide polymorphisms in the FNDC5 gene are associated with glucose metabolism but do not affect serum irisin levels in Japanese men with low fitness levels, Metabolism, 2014, vol. 63, no. 4, pp. 574–583.

    CAS  PubMed  Google Scholar 

  66. Tentolouris, A., Eleftheriadou, I., and Tsilingiris, D., Plasma irisin levels in subjects with type 1 diabetes: comparison with healthy controls, Horm. Metab. Res., 2018, vol. 50, no. 11, pp. 803–810.

    CAS  PubMed  Google Scholar 

  67. Wrann, C.D., White, J., Salogiannnis, J., et al., Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway, Cell Metab., 2013, vol. 18, no. 5, pp. 649–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, J. and Spiegelman, B.M., Irisin ERKs the fat, Diabetes, 2014, vol. 63, no. 2, pp. 381–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan, Y., Rato, C., Rohland, L., et al., MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP, Nat. Commun., 2019, vol. 10, no. 1, p. 541.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, M., Chen, P., Chen, S., et al., The association of new inflammatory markers with type 2 diabetes mellitus and macrovascular complications: a preliminary study, Eur. Rev. Med. Pharmacol. Sci., 2014, vol. 18, no. 11, pp. 1567–1572.

    CAS  PubMed  Google Scholar 

  71. Zhang, Z.P., Zhang, X.F., and Li, H., Serum irisin associates with breast cancer to spinal metastasis, Medicine (Baltimore), 2018, vol. 97, no. 17, p. 0524.

  72. Zhao, Y.T., Wang, J., and Yano, N., Irisin promotes cardiac progenitor cell-induced myocardial repair and functional improvement in infarcted heart, J. Cell Physiol., 2018, vol. 234, no. 2, pp. 1671–1681.

    PubMed  PubMed Central  Google Scholar 

  73. Zhou, X., Xu, M., Bryant, J.L., et al., Exercise-induced myokine FNDC5/irisin functions in cardiovascular protection and intracerebral retrieval of synaptic plasticity, Cell Biosci., 2019, vol. 9, p. 32.

    PubMed  PubMed Central  Google Scholar 

  74. Zuev, V.A., Dyatlova, A.S., Lin’kova, N.S., et al., Advanced pharmacotherapy of Alzheimer’s disease, Usp. Fiziol. Nauk, 2018, vol. 49, no. 4, pp. 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. I. Kuznik, S. O. Davidov or N. I. Chalisova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznik, B.I., Davidov, S.O. & Chalisova, N.I. Role of MANF, TIMP-2, and Irisin Proteins in Aging. Biol Bull Rev 10, 285–295 (2020). https://doi.org/10.1134/S2079086420040052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086420040052

Keywords:

Navigation