Skip to main content
Log in

The Role of Nucleophosmin in Cell Functioning and Tumor Progression

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Nucleophosmin/B23/NPM is a multifunctional protein that regulates the most important processes of cell viability and apoptosis. Disturbances in the NPM gene structure and expression of the B23 protein encoded by this gene play an important role in the development and progression of oncological, neurological, and other diseases. The review considers the structure of the NPM gene and the B23 protein, the functions of nucleophosmin, and its role in carcinogenesis from the standpoint of applied and fundamental molecular biological aspects of modern oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Adachi, Y., Copeland, T., and Hatanaka, M., Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B23, J. Biol. Chem., 1993, vol. 268, pp. 13930–13934.

    CAS  PubMed  Google Scholar 

  2. Arabi, A., Wu, S., and Ridderstråle, K., c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription, Nat. Cell Biol., 2005, vol. 7, pp. 303–310.

    CAS  PubMed  Google Scholar 

  3. Bañuelos, S., Lectez, B., Taneva, S.G., et al., Recognition of intermolecular G-quadruplexes by full length nucleophosmin. Effect of a leukemia-associated mutation, FEBS Lett., 2013, vol. 587, pp. 2254–2259.

    PubMed  Google Scholar 

  4. Bergstralh, D.T., Conti, B.J., Moore, C.B., et al., Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription, Exp. Cell Res., 2007, vol. 317, pp. 65–76.

    Google Scholar 

  5. Biggiogera, M., Fakan, S., and Kaufmann, S.H., Simultaneous immunoelectron microscopic visualization of protein B23 and C23 distribution in the HeLa cell nucleolus, J. Histochem. Cytochem., 1989, vol. 37, pp. 1371–1374.

    CAS  PubMed  Google Scholar 

  6. Bolli, N., De Marco, M.F., Martelli, M.P., et al., A dosedependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF, Leukemia, 2009, vol. 23, pp. 501–509.

    CAS  PubMed  Google Scholar 

  7. Bolli, N., Nicoletti, I., De Marco, M.F., et al., Born to be exported: COOH-terminal nuclear export signals of different strength ensure cytoplasmic accumulation of nucleophosmin leukemic mutants, Cancer Res., 2007, vol. 67, pp. 6230–6237.

    CAS  PubMed  Google Scholar 

  8. Bonetti, P., Davoli, T., Sironi, C., et al., Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7γ, J. Cell Biol., 2008, vol. 182, pp. 19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brandt, R., Nawka, M., and Kellermann, J., Nucleophosmin is a component of the fructoselysine-specific receptor in cell membranes of Mono Mac 6 and U937 monocyte-like cells, Biochim. Biophys. Acta, Gen. Subj., 2004, vol. 1670, pp. 132–136.

    CAS  Google Scholar 

  10. Chan, P.K., Chan, F.Y., Morris, S.W., and Xie, Z., Isolation and characterization of the human nucleophosmin/B23 (NPM) gene: identification of the YY1 binding site at the 5' enhancer region, Nucleic Acids Res., 1997, vol. 25, pp. 1225–1232.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, J.H. and Olson, M.O., Structure of the gene for rat nucleolar protein B23, J. Biol. Chem., 1990, vol. 265, pp. 18227–18233.

    CAS  PubMed  Google Scholar 

  12. Chang, J.H., Lin, J.Y., Wu, M.H., and Yung, B.Y., Evidence for the ability of nucleophosmin/B23 to bind ATP, Biochem. J., 1998, vol. 329, pp. 539–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, T.P., Yu, S.-L., Lin, S.-Y., et al., Tumor Suppressor HLJ1 binds and functionally alters nucleophosmin via activating enhancer binding protein 2α complex formation, Cancer Res., 2010, vol. 70, pp. 1656–1667.

    CAS  PubMed  Google Scholar 

  14. Chiarle, R., Simmons, W.J., Cai, H., et al., Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target, Nat. Med., 2005, vol. 11, pp. 623–629.

    CAS  PubMed  Google Scholar 

  15. Ching, R.H., Lau, E.Y., and Ling, P.M., Phosphorylation of nucleophosmin at threonine 234/237 is associated with HCC metastasis, Oncotarget, 2015, vol. 6, pp. 43483–43495.

    PubMed  Google Scholar 

  16. Choi, J.W., Lee, S.B., Kim, C.K., et al., Lysine 263 residue of NPM/B23 is essential for regulating ATP binding and B23 stability, FEBS Lett., 2008, vol. 582, pp. 1073–1080.

    CAS  PubMed  Google Scholar 

  17. Colombo, E., Alcalay, M., and Pelicci, P.G., Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases, Oncogene, 2011, vol. 30, pp. 2595–2609.

    CAS  PubMed  Google Scholar 

  18. Cordell, J.L., Pulford, K.A., Bigerna, B., et al., Detection of normal and chimeric nucleophosmin in human cells, Blood, 1999, vol. 93, pp. 632–642.

    CAS  PubMed  Google Scholar 

  19. Dabbous, M., Jefferson, M., and Haney, L., Biomarkers of metastatic potential in cultured adenocarcinoma clones, Clin. Exp. Metastasis, 2011, vol. 93, pp. 101–111.

    Google Scholar 

  20. Di Matteo, A., Franceschini, M., and Chiarella, S., Molecules that target nucleophosmin for cancer treatment an update, Oncotarget, 2016, vol. 7, pp. 44821–44840.

    PubMed  PubMed Central  Google Scholar 

  21. Endo, A., Matsumoto, M., and Inada, T., Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36, J. Cell Sci., 2009, vol. 122, pp. 678–686.

    CAS  PubMed  Google Scholar 

  22. Falini, B., Bolli, N., and Liso, A., Altered nucleophosmin transport in acute myeloid leukemia with mutated NPM1: molecular basis and clinical implications, Leukemia, 2009a, vol. 23, pp. 1731–1743.

    CAS  PubMed  Google Scholar 

  23. Falini, B., Sportoletti, P., and Martelli, M.P., Acute myeloid leukemia with mutated NPM1: diagnosis, prognosis and therapeutic perspectives, Curr. Opin. Oncol., 2009b, vol. 21, pp. 573–581.

    PubMed  Google Scholar 

  24. Falini, B., Macijewski, K., Weiss, T., et al., Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1), Blood, 2010, vol. 115, pp. 3776–3786.

    CAS  PubMed  Google Scholar 

  25. Finch R.A. and Chan, P.K., ATP depletion affects NPM translocation and exportation of rRNA from nuclei, Biochem. Biophys. Res. Commun., 1996, vol. 222, pp. 553–558.

    CAS  PubMed  Google Scholar 

  26. Foltz, D.R., Jansen, L.E., Black, B.E., et al., The human CENP-A centromeric nucleosome-associated complex, Nat. Cell Biol., 2006, vol. 8, pp. 458–469.

    CAS  PubMed  Google Scholar 

  27. Gjerset, R., DNA damage, p14ARF, nucleophosmin (NPM1/B23), and cancer, J. Mol. Histol., 2006, vol. 37, pp. 239–251.

    CAS  PubMed  Google Scholar 

  28. Grandori, C., Gomez-Roman, N., and Felton-Edkins, Z.A., c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I, Nat. Cell Biol., 2005, vol. 7, pp. 311–318.

    CAS  PubMed  Google Scholar 

  29. Grisendi, S., Mecucci, C., Falini, B., and Pandolfi, P.P., Nucleophosmin and cancer, Nat. Rev. Cancer, 2006, vol. 6, pp. 493–505.

    CAS  PubMed  Google Scholar 

  30. Grummitt, C.G., Townsley, F.M., Johnson, C.M., et al., Structural consequences of nucleophosmin mutations in acute myeloid leukemia, J. Biol. Chem., 2008, vol. 283, pp. 23326–23332.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gurumurthy, M., Tan, C.H., and Ng, R., Nucleophosmin interacts with HEXIM1 and regulates RNA polymerase II transcription, J. Mol. Biol., 2008, vol. 378, pp. 302–317.

    CAS  PubMed  Google Scholar 

  32. Haindl, M., Harasim, T., Eick, D., and Muller, S., The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing, EMBO Rep., 2008, vol. 9, pp. 273–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamilton, G., Abraham, A.G., and Morton, J., AKT regulates NPM dependent ARF localization and p53mut stability in tumors, Oncotarget, 2014, vol. 5, pp. 6142–6167.

    PubMed  PubMed Central  Google Scholar 

  34. Herrera, J.E., Savkur, R., and Olson, M.O., The ribonuclease activity of nucleolar protein B23, Nucleic Acids Res., 1995, vol. 23, pp. 3974–3979.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Herrera, J.E., Correia, J.J., Jones, A.E., and Olson, M.O.J., Sedimentation analyses of the salt- and divalent metal ion-induced oligomerization of nucleolar protein B23, Biochemistry, 1996, vol. 35, pp. 2668–2673.

    CAS  PubMed  Google Scholar 

  36. Hingorani, K., Szebem, A., and Olson, M.O., Mapping the functional domains of nucleolar protein B23, J. Biol. Chem., 2000, vol. 275, pp. 24451–24457.

    CAS  PubMed  Google Scholar 

  37. Hsu, C.Y. and Yung, B.Y., Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis, Int. J. Cancer, 2000, vol. 88, pp. 392–400.

    CAS  PubMed  Google Scholar 

  38. Inder, K.L., Lau, C., Loo, D., et al., Nucleophosmin and nucleolin regulate K-Ras plasma membrane interactions and MAPK signal transduction, J. Biol. Chem., 2009, vol. 284, pp. 28410–28419.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Itahana, K., Bhat, K.P., and Jin, A., Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation, Mol. Cell, 2003, vol. 12, pp. 1151–1164.

    CAS  PubMed  Google Scholar 

  40. Jiang, P.S. and Yung, B.Y., Down-regulation of nucleophosmin/B23 mRNA delays the entry of cells into mitosis, Biochem. Biophys. Res. Commun., 1999, vol. 257, pp. 865–870.

    CAS  PubMed  Google Scholar 

  41. Joukov, V., Groen, A.C., Prokhorova, T., et al., The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly, Cell, 2006, vol. 127, pp. 539–552.

    CAS  PubMed  Google Scholar 

  42. Karhemo, P.R., Rivinoja, A., Lundin, J., et al., An extensive tumor array analysis supports tumor suppressive role for nucleophosmin in breast cancer, Am. J. Pathol., 2011, vol. 179, pp. 1004–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Koike, A., Nishikawa, H., Wu, W., et al., Recruitment of phosphorylated NPM1 to sites of DNA damage through RNF8-dependent ubiquitin conjugates, Cancer Res., 2010, vol. 70, pp. 6746–6756.

    CAS  PubMed  Google Scholar 

  44. Kotani, H., Ito, M., and Hamaguchi, T., The delta isoform of protein phosphatase type 1 is localized in nucleolus and dephosphorylates nucleolar phosphoproteins, Biochem. Biophys. Res. Commun., 1998, vol. 249, pp. 292–296.

    CAS  PubMed  Google Scholar 

  45. Krause, A. and Hoffmann, I., Polo-Like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication, PLoS One, 2010, vol. 5, p. 9849.

    Google Scholar 

  46. Kuramitsu, Y., Hayashi, E., and Okada, F., Proteomic analysis for nucleolar proteins related to tumor malignant progression: a comparative proteomic study between malignant progressive cells and regressive cells, Anticancer Res., 2010, vol. 30, pp. 2093–2099.

    CAS  PubMed  Google Scholar 

  47. Kurki, S., Peltonen, K., and Laiho, M., Nucleophosmin, HDM2 and p53: players in UV damage incited nucleolar stress response, Cell Cycle, 2004a, vol. 3, pp. 976–979.

    CAS  PubMed  Google Scholar 

  48. Kurki, S., Peltonen, K., Latonen, L., et al., Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation, Cancer Cell, 2004b, vol. 5, pp. 465–475.

    CAS  PubMed  Google Scholar 

  49. Lawson, K., Larentowicz, L., Laury-Kleintop, L., and Gilmour, S.K., B23 is a downstream target of polyamine-modulated CK2, Mol. Cell. Biochem., 2005, vol. 274, pp. 103–114.

    CAS  PubMed  Google Scholar 

  50. Lee, S.B., Xuan Nguyen, T.L., Choi, J.W., et al., Nuclear Akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 16584–16589.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Z., Boone, D., and Hann, S.R., Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 18794–18799.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindström, M., NPM/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling, Biochem. Res. Int., 2011, vol. 2011, art. ID 195209.

    PubMed  Google Scholar 

  53. Lindström, M.S. and Zhang, Y., Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation, J. Biol. Chem., 2008, vol. 283, pp. 15568–15576.

    PubMed  PubMed Central  Google Scholar 

  54. Liu, Q.R. and Chan, P.K., Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein, Eur. J. Biochem., 1991, vol. 329, pp. 715–721.

    Google Scholar 

  55. Liu, W.H. and Yung, B.Y., Mortalization of human promyelocytic leukemia HL-60 cells to be more susceptible to sodium butyrate-induced apoptosis and inhibition of telomerase activity by down-regulation of nucleophosmin/B23, Oncogene, 1998, vol. 17, pp. 3055–3064.

  56. Liu, H., Tan, B.C.-M., and Tseng, K.H., Nucleophosmin acts as a novel AP2α-binding transcriptional corepressor during cell differentiation, EMBO Rep., 2007, vol. 8, pp. 394–400.

  57. Lu, Y.Y., Lam, C.Y., and Yung, B.Y., Decreased accumulation and dephosphorylation of themitosis-specific form of nucleophosmin/B23 in staurosporine-induced chromosome decondensation, Biochem J., 1996, vol. 317, pp. 321–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Martelli, A.M., Robuffo, I., Bortul, R., et al., Behavior of nucleolar proteins during the course of apoptosis in camptothecin-treated HL60 cells, J. Cell. Biochem., 2000, vol. 78, pp. 264–277.

    CAS  PubMed  Google Scholar 

  59. Mascaux, C., Bex, F., and Martin, B., The role of NPM, p14arf and MDM2 in precursors of bronchial squamous cell carcinoma, Eur. Respir. J., 2008, vol. 32, pp. 678–686.

    CAS  PubMed  Google Scholar 

  60. McCloskey, R., Menges, C., Friedman, A., et al., Human papillomavirus type 16 E6/E7 upregulation of nucleophosmin is important for proliferation and inhibition of differentiation, J. Virol., 2010, vol. 84, pp. 5131–5139.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mitrea, D.M. and Kriwacki, R.W., Cryptic disorder: an order-disorder transformation regulates the function of nucleophosmin, Pac. Symp. Biocomput., 2012, pp. 152–163.

  62. Mitrea, D.M., Grace, C.R., Buljan, M., et al., Structural polymorphism in the N-terminal oligomerization domain of NPM1, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 4466–4471.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Murano, K., Okuwaki, M., Hisaoka, M., and Nagata, K., Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity, Mol. Cell. Biol., 2008, vol. 28, pp. 3114–3126.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Negi, S.S. and Olson, M.O., Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23, J. Cell Sci., 2006, vol. 119, pp. 3676–3685.

    CAS  PubMed  Google Scholar 

  65. Nishimura, Y., Ohkubo, T., Furuichi, Y., and Umekawa, H., Tryptophans 286 and 288 in the C-terminal region of protein B23.1 are important for its nucleolar localization, Biosci. Biotechnol. Biochem., 2002, vol. 66, pp. 2239–2242.

    CAS  PubMed  Google Scholar 

  66. Okuda, M., The role of nucleophosmin in centrosome duplication, Oncogene, 2002, vol. 21, pp. 6170–6174.

    CAS  PubMed  Google Scholar 

  67. Okuda, M., Horn, H.F., and Tarapore, P., Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication, Cell, 2000, vol. 103, pp. 127–140.

    CAS  PubMed  Google Scholar 

  68. Okuwaki, M., The structure and functions of NPM1/Nucleophosmin/B23, a multifunctional nucleolar acidic protein, J. Biochem., 2008, vol. 143, pp. 441–448.

    CAS  PubMed  Google Scholar 

  69. Okuwaki, M., Matsumoto, K., Tsujimoto, M., and Nagata, K., Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone, FEBS Lett., 2001, vol. 506, pp. 272–276.

    CAS  PubMed  Google Scholar 

  70. Okuwaki, M., Tsujimoto, M., and Nagata, K., The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype, Mol. Biol. Cell, 2002, vol. 13, pp. 2016–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Palaniswamy, V., Moraes, K.C.M., Wilusz, C.J., and Wilusz, J., Nucleophosmin is selectively deposited on mRNA during polyadenylation, Nat. Struct. Mol. Biol., 2006, vol. 13, pp. 429–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Patterson, S.D., Grossman, J.S., D’Andrea, P., and Latter, G.I., Reduced numatrin/B23/nucleophosmin labeling in apoptotic Jurkat T-lymphoblasts, J. Biol. Chem., 1995, vol. 270, pp. 9429–9436.

    CAS  PubMed  Google Scholar 

  73. Pearson, J.D., Lee, J.K., Bacani, J.T., et al., NPM-ALK: the prototypic member of a family of oncogenic fusion tyrosine kinases, J. Recept. Signal Transduction, 2012, vol. 2012, p. 123253.

    Google Scholar 

  74. Peter, M., Nakagawa, J., Dorée, M., et al., Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase, Cell, 1990, vol. 60, pp. 791–801.

    CAS  PubMed  Google Scholar 

  75. Pfister, J.A. and D’Mello, S.R., Insights into the regulation of neuronal viability by nucleophosmin/B23, Exp. Biol. Med. (Maywood), 2015, vol. 240, pp. 774–786.

    CAS  Google Scholar 

  76. Poletto, M., Lirussi, L., Wilson, D.M., III, and Tell, G., Nucleophosmin modulates stability, activity and nucleolar accumulation of base excision repair proteins, Mol. Biol. Cell, 2014, vol. 25, pp. 1641–1652.

    PubMed  PubMed Central  Google Scholar 

  77. Pollock, S.L., Rush, E.A., and Redner, R.L., NPM-RAR, not the RAR-NPM reciprocal t(5;17)(q35;q21) acute promyelocytic leukemia fusion protein, inhibits myeloid differentiation, Leuk. Lymphoma, 2014, vol. 55, pp. 1383–1387.

    CAS  PubMed  Google Scholar 

  78. Prinos, P., Lacoste, M.C., Wong, J., et al., Mutation of cysteine 21 inhibits nucleophosmin/B23 oligomerization and chaperone activity, Int. J. Biochem. Mol. Biol., 2010, vol. 2, pp. 24–30.

    PubMed  PubMed Central  Google Scholar 

  79. Qi, W., Shakalya, K., and Stejskal, A., NSC348884 a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells, Oncogene, 2008, vol. 27, pp. 4210–4220.

    CAS  PubMed  Google Scholar 

  80. Redner, R.L., Chen, J.D., Rush, E.A., et al., The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties, Blood, 2000, vol. 95, pp. 2683–2690.

    CAS  PubMed  Google Scholar 

  81. Ruggero, D. and Pandolfi, P.P., Does the ribosome translate cancer? Nat. Rev. Cancer, 2003, vol. 3, pp. 179–192.

    CAS  PubMed  Google Scholar 

  82. Sato, K., Hayami, R., Wu, W., et al., Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase, J. Biol. Chem., 2004, vol. 279, pp. 30919–30922.

    CAS  PubMed  Google Scholar 

  83. Scognamiglio, P.L., Di Natale, C., Leone, M., et al., G-quadruplex DNA recognition by nucleophosmin: new insights from protein dissection, Biochim. Biophys. Acta, Gen. Subj., 2014, vol. 1840, pp. 2050–2059.

    CAS  Google Scholar 

  84. Shandilya, J., Swaminathan, V., Gadad, S.S., et al., Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation, Mol. Cell. Biol., 2009, vol. 29, pp. 5115–5127.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sheng, J. and Zhang, W., Identification biomarkers for cervical cancer in peripheral blood lymphocytes by oligonucleotide microarrays, Zhonghua Yi Xue Za Zhi, 2010, vol. 90, pp. 2611–2615.

    CAS  PubMed  Google Scholar 

  86. Slupianek, A., Nieborowska-Skorska, M., Hoser, G., et al., Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis, Cancer Res., 2001, vol. 61, pp. 2194–2199.

    CAS  PubMed  Google Scholar 

  87. Smetana, K., Ochs, R., Lischwe, M.A., et al., Immunofluorescence studies on proteins B23 and C23 in nucleoli of human lymphocytes, Exp. Cell Res., 1984, vol. 152, pp. 195–203.

    CAS  PubMed  Google Scholar 

  88. Spector, D.L., Ochs, R.L., and Busch, H., Silver staining, immunofluorescence, and immunoelectron microscopic localization of nucleolar phosphoproteins B23 and C23, Chromosoma, 1984, vol. 90, pp. 139–148.

    CAS  PubMed  Google Scholar 

  89. Staber, P.B., Vesely, P., Haq, N., et al., The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling, Blood, 2007, vol. 110, pp. 3374–3383.

    CAS  PubMed  Google Scholar 

  90. Swaminathan, V., Kishore, A.H., Febitha, K.K., and Kundu, T.K., Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription, Mol. Cell. Biol., 2005, vol. 25, pp. 7534–7545.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Szebeni, A. and Olson, M.O., Nucleolar protein B23 has molecular chaperone activities, Protein Sci., 1999, vol. 8, pp. 905–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Szebeni, A., Mehrotra, B., and Baumann, A., Nucleolar protein B23 stimulated neclear import of the HIV-1 Rev protein and NLS-conjugated albumin, Biochemistry, 1997, vol. 36, pp. 3941–3949.

    CAS  PubMed  Google Scholar 

  93. Takemura, M., Ohta, N., and Furuichi, Y., Stimulation of calf thymus DNA polymerase α activity by nucleolar protein B23, Biochem. Biophys. Res. Commun., 1994, vol. 199, pp. 46–51.

    CAS  PubMed  Google Scholar 

  94. Takemura, M., Sato, K., Nishio, M., et al., Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase α activity, J. Biochem., 1999, vol. 125, pp. 904–909.

    CAS  PubMed  Google Scholar 

  95. Tarapore, P., Shinmura, K., and Suzuki, H., Thr199 phosphorylation targets nucleophosmin to nuclear speckles and represses pre-mRNA processing, FEBS Lett., 2006, vol. 580, pp. 399–409.

    CAS  PubMed  Google Scholar 

  96. Tawfic, S., Goueli, S.A., Olson, M.O., and Ahmed, K., Androgenic regulation of the expression and phosphorylation of prostatic nucleolar protein B23, Cell Mol. Biol. Res., 1993, vol. 39, pp. 43–51.

    CAS  PubMed  Google Scholar 

  97. Tawfic, S., Olson, M.O., and Ahmed, K., Role of protein phosphorylation in post-translational regulation of protein B23 during programmed cell death in the prostate gland, J. Biol. Chem., 1995, vol. 270, pp. 21009–21015.

    CAS  PubMed  Google Scholar 

  98. Tokuyama, Y., Horn, H.F., Kawamura, K., et al., Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication, J. Biol. Chem., 2001, vol. 276, pp. 21529–21537.

    CAS  PubMed  Google Scholar 

  99. Tulchin, N., Chambon, M., and Juan, G., BRCA1 protein and nucleolin colocalize in breast carcinoma tissue and cancer cell lines, Am. J. Pathol., 2010, vol. 176, pp. 1203–1214.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Velusamy, T., Kiel, M.J., Sahasrabuddhe, A.A., et al., A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders, Blood, 2014, vol. 124, pp. 3768–3771.

    CAS  PubMed  Google Scholar 

  101. Wang, W., Budhu, A., Forgues, M., and Wang, X.W., Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication, Nat. Cell Biol., 2005, vol. 7, pp. 823–830.

    CAS  PubMed  Google Scholar 

  102. Wanzel, M., Russ, A.C., Kleine-Kohlbrecher, D., et al., A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth, Nat. Cell Biol., 2008, vol. 10, pp. 1051–1061.

    CAS  PubMed  Google Scholar 

  103. Watanabe, M., Sasaki, M., Itoh, K., et al., JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen- activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and reed-sternberg cells of Hodgkin lymphoma, Cancer Res., 2005, vol. 65, pp. 7628–7634.

    CAS  PubMed  Google Scholar 

  104. White, R.J., RNA polymerases I and III, non-coding RNAs and cancer, Trends Genet., 2008, vol. 24, pp. 622–629.

    CAS  PubMed  Google Scholar 

  105. Wu, M.H. and Yung, B.Y., UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA, J. Biol. Chem., 2002, vol. 277, pp. 48234–48240.

    CAS  PubMed  Google Scholar 

  106. Wu, H.L., Hsu, C.Y., Liu, W.H., and Yung, B.Y., Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity, Int. J. Cancer, 1999, vol. 81, pp. 923–929.

    CAS  PubMed  Google Scholar 

  107. Yang, C., Maiguel, D.A., and Carrier, F., Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins, Nucleic Acids Res., 2002, vol. 30, pp. 2251–2260.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, K., Wang, M., Zhao, Y., et al., A redox mechanism underlying nucleolar stress sensing by nucleophosmin, Nat. Commun., 2016, vol. 7, p. 13599.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ye, K., Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis, Cancer Biol. Ther., 2005, vol. 4, pp. 918–923.

    CAS  PubMed  Google Scholar 

  110. Yoneda-Kato, N., Look, A.T., Kirstein, M.N., et al., The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1, Oncogene, 1996, vol. 12, pp. 265–275.

    CAS  PubMed  Google Scholar 

  111. Yu, Y., Maggi, L.B., Jr., and Brady, S.N., Nucleophosmin is essential for ribosomal protein L5 nuclear export, Mol. Cell. Biol., 2006, vol. 26, pp. 3798–3809.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yun, J.P., Chew, E.C., and Liew, C.T., Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix, J. Cell. Biochem., 2003, vol. 90, pp. 1140–1148

    CAS  PubMed  Google Scholar 

  113. Yung, B.Y., Oncogenic role of nucleophosmin/B23, Chang, Gung Med. J., 2007, vol. 30, pp. 285–293.

    Google Scholar 

  114. Zatsepina, O.V., Todorov, I.T., Philipova, R.N., et al., Cell cycle-dependent translocations of a major nucleolar phosphoprotein, B23, and some characteristics of its variants, Eur. J. Cell. Biol., 1997, vol. 73, pp. 58–70.

    CAS  PubMed  Google Scholar 

  115. Zeller, K.I., Haggerty, T.J., and Barrett, J.F., Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation, J. Biol. Chem., 2001, vol. 276, pp. 48285–48291.

    CAS  PubMed  Google Scholar 

  116. Zhang, H., Shi, X., Paddon, H., et al., B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1, J. Biol. Chem., 2004, vol. 279, pp. 35726–35734.

    CAS  PubMed  Google Scholar 

  117. Zhao, X., Ji, J., and Yu, L.R., Cell cycle-dependent phosphorylation of nucleophosmin and its potential regulation by peptidyl-prolyl cis/trans isomerase, J. Mol. Biochem., 2015, vol. 4, pp. 95–103.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ponkratova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponkratova, D.A., Lushnikova, A.A. The Role of Nucleophosmin in Cell Functioning and Tumor Progression. Biol Bull Rev 10, 266–279 (2020). https://doi.org/10.1134/S2079086420040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086420040064

Keywords:

Navigation