Skip to main content
Log in

Assessment of the Likelihood of Underground Coal Oxidation and Self-Ignition: A Review

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

Standard and alternative methods of assessing the likelihood of coal oxidation and self-ignition in the bed are analyzed. These methods are based on the change in the petrographic, physicomechanical, chemical, and thermal properties of the coal on oxidation. Most of the methods are unsuitable for identification of the initial stage of coal oxidation. The onset of self-heating may be better determined on the basis of the surface properties of the coal: in particular, the hydrophobic–hydrophilic balance and the sorptional properties of internal surfaces. The extraction, transportation, and analysis of the coal sample from the bed must prevent contact with the air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kumar Singh, R.V., Spontaneous heating and fire in coal mines, Procedia Eng., 2013, vol. 62, pp. 78–90. https://doi.org/10.1016/j.proeng.2013.08.046

    Article  CAS  Google Scholar 

  2. Kaymakci, E. and Didari, V., Relations between coal properties and spontaneous combustion parameters, Turk. J. Eng. Environ. Sci., 2002, vol. 26, pp. 59–64.

    CAS  Google Scholar 

  3. Veselovskii, V.S., Vinogradova, L.N., Orleanskaya, G.N., et al., Fizicheskie osnovy samovozgoraniya uglya i rud (Physical Principles of Self-Ignition of Coal and Ores), Moscow: Nauka, 1972.

  4. Lindenau, N.I., Maevskaya, V.M., and Krylov, V.F., Proiskhozhdenie, profilaktika i tushenie endogennykh pozharov (Origin, Prevention, and Extinguishing of Endogenous Fires), Moscow: Nedra, 1977.

  5. Saranchuk, V.I. and Baev, Kh.A., Teoreticheskie osnovy samovozgoraniya uglya (Theory of Coal Self-Ignition), Moscow: Nedra, 1976.

  6. Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Tanashev, Yu.Yu., and Bolotov, V.A., Initiation of underground fire sources, J. Min. Sci., 2016, vol. 52, no. 3, pp. 576–592.

    Article  CAS  Google Scholar 

  7. Kong, B., Li, Z., Yang, Y., et al., A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China, Environ. Sci. Pollut. Res., 2017. https://doi.org/10.1007/s11356-017-0209-6

  8. Lu, W., Cao, Y.J., and Tien, J.C., Method for prevention and control of spontaneous combustion of coal seam and its application in mining field, Int. J. Min. Sci. Technol., 2017, vol. 27, pp. 839–846. https://doi.org/10.1016/j.ijmst.2017.07.018

    Article  CAS  Google Scholar 

  9. Federal’nye normy i pravila v oblasti promyshlennoi bezopasnosti “Instruktsiya po opredeleniyu inkubatsionnogo perioda samovozgoraniya uglya” (Federal Standards and Regulations of Industrial Safety “Instruction for Determination of Incubation Period of Coal Self-Ignition”), Moscow: Nauchno-Tekh. Tsentr Issled. Probl. Prom. Bezop., 2013, no. 38.

  10. Federal’nye normy i pravila v oblasti promyshlennoi bezopasnosti “Instruktsiya po preduprezhdeniyu enfogennykh pozharov i bezopasnomu vedeniyu gornykh rabot na sklonnykh k samovozgoraniyu plastakh uglya” (Federal Standards and Regulations of Industrial Safety “Instruction for Prevention of Endogenous Fires and Safe Mining in Coal Seams with Possible Spontaneous Ignition), Moscow: Nauchno-Tekh. Tsentr Issled. Probl. Prom. Bezop., 2016, no. 46.

  11. Filatov, Yu.M., Igishev, V.G., Shlapakov, P.A., Shiryaev, S.N., and Shlapakov, E.A., New regulatory database on prevention of endogenous fires in mines, Ugol’, 2018, no. 2, pp. 67–70. .https://doi.org/10.18796/0041-5790-2018-2-67-70

  12. Nurgaliev, E.I., Majorov, A.E., and Cherepanov, A.A., Complex isolation of mine works of Raspadskaya Coal Company. Raspadskaya-Koksovaya mine, Part 1, Ugol’, 2019, no. 2, pp. 25–30. .https://doi.org/10.18796/0041-5790-2019-2-25-30

  13. Majorov, A.E. and Paleev, D.Yu., The isolation status of mine works in the Kuzbass mines, Vestn. Nauchn. Tsentra Bezop. Rabot Ugol’noi Prom-sti., 2019, no. 3, pp. 60–65.

  14. Portola, V.A. and Galsanov, N.L., The effective use of inert compositions for fire extinguishing in the mines, Bezop. Truda Prom-sti, 2012, no. 6, pp. 34–37.

  15. Sin, S.A., Portola, V.A., and Igishev, V.G., Efficiency of nitrogen use to combat spontaneous combustion of coal in mines, Ugol’, 2018, vol. 1106, no. 5, pp. 51–57.

    Article  Google Scholar 

  16. Qin, B., Ma, D., Li, F., and Li, Y., Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control, Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 24657–24665. https://doi.org/10.1007/s11356-017-9982-5

    Article  CAS  Google Scholar 

  17. Rúal, M.B., Baenal, P.B., and Aragon, A.D., Optimization of techniques for the extinction and prevention of coal fires produced in final walls as a result of spontaneous combustion in the Cerrejon mine-Colombia, Environ. Sci. Pollut. Res., 2018. https://doi.org/10.1007/s11356-018-3201-x

  18. Igishev, V.G., Prevention and extinguishing of endogenous fires by foam, Ugol’, 1977, no. 3, pp. 60–63.

  19. Boldin, V.A., Prevention of endogenous fires with powdered flame retardants, in Preduprezhdenie endogennykh pozharov v shakhtakh (Prevention of Endogenous Fires in Mines), Kemerovo, 1986, pp. 22–25.

  20. Portola, V.A. and Torosyan, E.S., The effect of flame retardants on the sorption capacity of hot coal, Vestn. Kuzbass. Gos. Tekh. Univ., 2016, no. 3, pp. 15–20.

  21. Ren, W., Guo, Q., Zuo, B., and Wang, Z., Design and application of device to add powdered gelling agent to pipeline system for fire prevention in coal mines, J. Loss Prev. Process Ind., 2016, vol. 41, pp. 147–153. https://doi.org/10.1016/j.jlp.2016.03.013

    Article  Google Scholar 

  22. Shlapakov, P.A., The method of braking coal oxidation, Vestn. Vost. Nauchno-Issled. Inst., 2011, no. 2, pp. 478–480.

  23. Galsanov, N.L., Obtaining inerting compositions with freezing of fluid particles to prevent fires, Vestn. Kuzbass. Gos. Tekh. Univ., 2016, no. 5, pp. 132–4137.

  24. Wang, H., Dlugogorski, B.Z., and Kennedy, E.M., Kinetic modeling of low-temperature oxidation of coal, Combust. Flame, 2002, vol. 131, no. 4, pp. 452–464.https://doi.org/10.1016/S0010-2180(02)00416-9

    Article  CAS  Google Scholar 

  25. Saranchuk, V.I., Okislenie i samovozgoranie uglya (Oxidation and Self-Combustion of Coal), Kiev: Naukova Dumka, 1982.

  26. Portola, V.A. and Labukin, S.N., Detection of spots of spontaneous combustion of coal at an early stage of development, Bezop. Truda Prom-sti, 2009, no. 4, pp. 34–37.

  27. Prikaz Rostekhnadzora no. 132 ot 02.04.2013 (red. ot 22.06.2016) Ob utverzhdenii Federal’nykh norm i pravil v oblasti promyshlennoi bezopasnosti “Instruktsiya po opredeleniyu inkubatsionnogo perioda samovozgoraniya uglya” (Order of Rostekhnadzor No. 132 of April 2, 2013 (Revised on July 22, 2016) On Approval of Federal Norms and Rules for Industrial Safety “Instruction for Determination of Incubation Period of Coal Self-Combution”), Moscow, 2016.

  28. Avgushevich, I.V., Sidoruk, E.I., and Boronovets, T.M., Standartnye metody ispytaniya uglei. Klassifikatsiya uglei (Standard Testing Methods of Coal: Coal Classification), Moscow: Reklama Master, 2018.

  29. Epshtein, S.A., Mongush, M.A., and Nesterova, V.G., Forecasting of coal ability to oxidation and self-combustion, Gorn. Inf.-Anal. Byull., 2008, no. 12, pp. 211–216.

  30. Kukharenko, T.A., Okislennye v plastakh burye i kamennye ugli (Lignites and Coal Oxidized in Seams), Moscow: Nedra, 1972.

  31. Krym, V.S., Khimiya tverdogo topliva. Chast’ 1. Iskopaemye ugli (Solid Fuel Chemistry, Part 1: Fossil Coal), Kiev: Gos. Nauchno-Tekh. Isd. Ukr., 1934.

  32. Tronov, B.V., Coal oxidation by air oxygen, Materialy Vsesoyuznogo soveshchaniya po podzemnym pozharam (Proc. All-Union Meeting on Underground Fires), Moscow: Poligrafkniga, 1941.

  33. Xin, H., Wang, D., Dou, G., et al., The infrared characterization and mechanism of oxygen adsorption in coal, Spectrosc. Lett., 2014, vol. 47, pp. 664–675. https://doi.org/10.1080/00387010.2013.833940

    Article  CAS  Google Scholar 

  34. Ivanov, V.P. and Artser, A.S., Assessment of the mechanical strength of coal and the possible forecasting of fire hazard zones based on IR spectroscopy, Gorn. Inf.-Anal. Byull., 2004, no. 11, pp. 337–341.

  35. Ye, Y., Jin, R., and Miller, J.D., Thermal treatment of low-rank coal and its relationship to flotation response, Int. J. Coal Prep. Util., 1988, vol. 6, pp. 1–16. https://doi.org/10.1080/07349348808960511

    Article  CAS  Google Scholar 

  36. Jena, M.S., Biswal, S.K., and Rudramuniyappa, M.V., Study on flotation characteristics of oxidized Indian high ash sub-bituminous coal, Int. J. Miner. Process., 2008, vol. 87, pp. 42–50. https://doi.org/10.1016/j.minpro.2008.01.004

    Article  CAS  Google Scholar 

  37. Kasatochkin, V.I. and Larina, N.K., Kinetics and mechanism of oxidation of fossil coal, Tr. Inst. Gorn. Dela,Akad. Nauk SSSR, 1960, vol. 14, pp. 98–107.

    Google Scholar 

  38. Kucher, R.V., Kompanets, V.A., and Butuzova, L.F., Struktura iskopaemykh uglei i ikh sposobnost’ k okisleniyu (The Structure of Fossil Coal and Their Ability to Oxidation), Kiev: Naukova Dumka, 1980.

  39. Fomina, A.S., Kukharenko, T.A., Rumyantseva, Z.A, et al., Oxidation as a method for study of solid fossil fuels, Khim. Tverd. Topl. (Moscow), 1971, no. 5, pp. 11–18.

  40. Obvintseva, L.A., Sukhareva, I.P., Epshtein, S.A., Dobryakova, N.N., and Avetisov, A.K., Interaction of coals with ozone at low concentrations, Solid Fuel Chem., 2017, vol. 51, no. 3, pp. 155–159. https://doi.org/10.3103/S0361521917030077

    Article  CAS  Google Scholar 

  41. Dobryakova, N.N., Minaev, V.I., Nesterova, V.G., and Epshtein, S.A., Novye podkhody k klassifikatsii uglei po ikh sklonnosti k okisleniyu (New Approaches to the Classification of Coal by Their Oxidation Ability), Moscow: Gornaya Kniga, 2016.

  42. Semenova, S.A. and Patrakov, Yu.F., Ozonation of coal vitrinites of different metamorphism degrees in gas and liquid phases, Solid Fuel Chem., 2007, vol. 41, no. 1, pp. 15–18.

    Article  Google Scholar 

  43. Epshtein, S.A., Gavrilova, D.I., Kossovich, E.L., and Adamtsevich, A.O., Assessment of the coal ability to oxidation and spontaneous combustion by thermal methods, Gron. Zh., 2016, no. 7, pp. 100–104.

  44. Chen, X.D. and Chong, L.V., Several important issues related to the crossing-point temperature (CPT) method for measuring self-ignition kinetics of combustible solids, Process Saf. Environ. Prot., 1998, vol. 76, no. 2, pp. 90–93.

    Article  CAS  Google Scholar 

  45. Wang, D., Qi, X., Zhong, X., and Gu, J., Test method for the propensity of coal to spontaneous combustion, Procedia Earth Planet. Sci., 2009, vol. 1, pp. 20–26. https://doi.org/10.1016/j.pro.2009.09.00

    Article  CAS  Google Scholar 

  46. Beamish, B.B., Barakat, M.A., and St George, J.D., Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects, Thermochim. Acta, 2000, vol. 362, pp. 79–87. .https://doi.org/10.1016/s0040-6031(00)00588-8

    Article  CAS  Google Scholar 

  47. Taraba, B. and Pavelek, Z., Investigation of the spontaneous combustion susceptibility of coal using the pulse flow calorimetric method: 25 years of experience, Fuel, 2014, vol. 125, pp. 101–105. https://doi.org/10.1016/j.fuel.2014.02.024

    Article  CAS  Google Scholar 

  48. Zhan, J., Wang, H., Zhu, F., and Song, S., Analysis on the governing reactions in coal oxidation at temperatures up to 400°C, Int. J. Clean Coal Energy, 2014, vol. 3, pp. 19–28. https://doi.org/10.4236/ijcce.2014.32003

    Article  CAS  Google Scholar 

  49. Li, B., Chen, G., Zhang, H., and Sheng, C., Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition, Fuel, 2014, vol. 118, pp. 385–391. https://doi.org/10.1016/j.fuel.2013.11.011

    Article  CAS  Google Scholar 

  50. Veselovskii, V.S., Ispytanie goryuchikh iskopaemykh (Testing of Combustible Fossils), Moscow: Gos. Nauchno-Tekh. Izd. Geol. Okhr. Nedr, 1963, p. 152.

  51. Patrakov, Yu.F., Semenova, S.A., and Usanina, A.S., Change in chemical composition and surface properties during atmospheric coal oxidation, Vestn. Kuzbass. Gos. Tekh. Univ., 2017, no. 2, pp. 133–139.

  52. Fuerstenau, D.W. and Diao, J., Characterization of coal oxidation and coal wetting behavior by film flotation, Coal Prep., 1992, vol. 10, pp. 1–17.

    Article  CAS  Google Scholar 

  53. Li, E., Lu, Y., Cheng, F., et al., Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies, Physicochem. Probl. Miner. Process., 2018, vol. 54, no. 4, pp. 1039–1051. https://doi.org/10.5277/ppmp1882

    Article  CAS  Google Scholar 

  54. Semenova, S.A. and Patrakov, Yu.F., Influence of weathering on the composition and properties of coal, Coke Chem., 2017, vol. 60, no. 3, pp. 96–101. https://doi.org/10.3103/S1068364X17100064

    Article  Google Scholar 

  55. Wang, X., Qi, D., and Xin, H., An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures, Spectrosc. Lett., 2014, vol. 47, pp. 495–503. https://doi.org/10.1080/00387010.2013.817433

    Article  CAS  Google Scholar 

  56. Rausa, R., Calemma, V., Ghelli, S., and Girardi, E., Study of low temperature coal oxidation by 13C CP/MAS NMR, Fuel, 1989, vol. 68, no. 9, pp. 1168–1172. https://doi.org/10.1016/0016-2361(89)90190-7

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Foundation for Basic Research and the Kemerovo oblast of the Kuznetsk Basin (project 20-45–420011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Semenova, Yu. F. Patrakov or A. E. Majorov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, S.A., Patrakov, Y.F. & Majorov, A.E. Assessment of the Likelihood of Underground Coal Oxidation and Self-Ignition: A Review. Coke Chem. 63, 223–231 (2020). https://doi.org/10.3103/S1068364X20050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X20050063

Keywords:

Navigation